Solving Hard Mizar Problems with Instantiation and Strategy Invention

Jan Jakubův, Mikoláš Janota, Josef Urban
{"title":"Solving Hard Mizar Problems with Instantiation and Strategy Invention","authors":"Jan Jakubův, Mikoláš Janota, Josef Urban","doi":"arxiv-2406.17762","DOIUrl":null,"url":null,"abstract":"In this work, we prove over 3000 previously ATP-unproved Mizar/MPTP problems\nby using several ATP and AI methods, raising the number of ATP-solved Mizar\nproblems from 75\\% to above 80\\%. First, we start to experiment with the cvc5\nSMT solver which uses several instantiation-based heuristics that differ from\nthe superposition-based systems, that were previously applied to Mizar,and add\nmany new solutions. Then we use automated strategy invention to develop cvc5\nstrategies that largely improve cvc5's performance on the hard problems. In\nparticular, the best invented strategy solves over 14\\% more problems than the\nbest previously available cvc5 strategy. We also show that different\nclausification methods have a high impact on such instantiation-based methods,\nagain producing many new solutions. In total, the methods solve 3021 (21.3\\%)\nof the 14163 previously unsolved hard Mizar problems. This is a new milestone\nover the Mizar large-theory benchmark and a large strengthening of the hammer\nmethods for Mizar.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we prove over 3000 previously ATP-unproved Mizar/MPTP problems by using several ATP and AI methods, raising the number of ATP-solved Mizar problems from 75\% to above 80\%. First, we start to experiment with the cvc5 SMT solver which uses several instantiation-based heuristics that differ from the superposition-based systems, that were previously applied to Mizar,and add many new solutions. Then we use automated strategy invention to develop cvc5 strategies that largely improve cvc5's performance on the hard problems. In particular, the best invented strategy solves over 14\% more problems than the best previously available cvc5 strategy. We also show that different clausification methods have a high impact on such instantiation-based methods, again producing many new solutions. In total, the methods solve 3021 (21.3\%) of the 14163 previously unsolved hard Mizar problems. This is a new milestone over the Mizar large-theory benchmark and a large strengthening of the hammer methods for Mizar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用实例化和策略发明解决米扎难题
在这项工作中,我们使用几种ATP和人工智能方法证明了3000多个以前ATP未证明的水蟾/MPTP问题,将ATP解决的水蟾问题的数量从75%提高到80%以上。首先,我们开始尝试使用 cvc5SMT 求解器,它使用了几种基于实例化的启发式方法,不同于之前应用于水泽的基于叠加的系统,并增加了许多新的解决方案。然后,我们使用自动策略发明来开发 cvc5 策略,这些策略在很大程度上提高了 cvc5 在难题上的性能。特别是,发明的最佳策略比以前可用的最佳 cvc5 策略多解决了超过 14% 的问题。我们还表明,不同的因果化方法对这种基于实例化的方法影响很大,同样产生了许多新的解决方案。这些方法总共解决了 14163 个以前未解决的米扎难题中的 3021 个(21.3%)。这是超越水蟾蜍大理论基准的一个新里程碑,也是对水蟾蜍锤击方法的极大加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1