Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors

IF 0.8 4区 化学 Q4 SPECTROSCOPY Journal of Applied Spectroscopy Pub Date : 2024-07-04 DOI:10.1007/s10812-024-01769-x
Sunil K. Sahu, Anil Shrivastav, N. K. Swamy, Vikas Dubey, D. K. Halwar, M. Tanooj Kumar, M. C. Rao
{"title":"Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors","authors":"Sunil K. Sahu, Anil Shrivastav, N. K. Swamy, Vikas Dubey, D. K. Halwar, M. Tanooj Kumar, M. C. Rao","doi":"10.1007/s10812-024-01769-x","DOIUrl":null,"url":null,"abstract":"<p>Current challenges in the field of luminescent materials are concerned with designing efficient material to meet the rapidly rising demands of industry. Luminescent material excitation and emission are highly complex phenomena driven by the combination of atomic-level properties such as valence electron, inter-atomic radius, ionic radius, etc., and physical properties such as crystal structure, symmetry, etc. The current research paper focuses on the development of a machine-learning algorithm based on simple luminescent materials to predict the excitation to the closest possible accuracy using easily accessible key attributes by the CatBoost regressor, multiple linear regression (MLR), and an artificial neural network (ANN) approach. These selected features likely correlate with the excitation of the material. In comparison, the ANN and MLR algorithms have higher mean absolute error values in both the training and test datasets. The CatBoost algorithm outperforms the other algorithms in terms of mean of the absolute percentage difference, achieving a value of 0.302136% in the training dataset. The CatBoost algorithm exhibits the lowest root mean squared error value of 1.680768 nm in the training dataset, indicating that its predictions have a smaller average deviation from the actual values. The style for studying the material property has the potential to reduce the cost and time involved in an Edisonian approach to the lengthy laboratory experiment to identify excitation.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10812-024-01769-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Current challenges in the field of luminescent materials are concerned with designing efficient material to meet the rapidly rising demands of industry. Luminescent material excitation and emission are highly complex phenomena driven by the combination of atomic-level properties such as valence electron, inter-atomic radius, ionic radius, etc., and physical properties such as crystal structure, symmetry, etc. The current research paper focuses on the development of a machine-learning algorithm based on simple luminescent materials to predict the excitation to the closest possible accuracy using easily accessible key attributes by the CatBoost regressor, multiple linear regression (MLR), and an artificial neural network (ANN) approach. These selected features likely correlate with the excitation of the material. In comparison, the ANN and MLR algorithms have higher mean absolute error values in both the training and test datasets. The CatBoost algorithm outperforms the other algorithms in terms of mean of the absolute percentage difference, achieving a value of 0.302136% in the training dataset. The CatBoost algorithm exhibits the lowest root mean squared error value of 1.680768 nm in the training dataset, indicating that its predictions have a smaller average deviation from the actual values. The style for studying the material property has the potential to reduce the cost and time involved in an Edisonian approach to the lengthy laboratory experiment to identify excitation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的荧光粉激发波长预测
当前,发光材料领域面临的挑战是如何设计出高效的材料,以满足快速增长的工业需求。发光材料的激发和发射是非常复杂的现象,由原子价电子、原子间半径、离子半径等原子级特性和晶体结构、对称性等物理特性共同驱动。本研究论文的重点是开发一种基于简单发光材料的机器学习算法,通过 CatBoost 回归器、多元线性回归(MLR)和人工神经网络(ANN)方法,利用易于获取的关键属性,尽可能准确地预测激发。这些选定的特征可能与材料的激发相关。相比之下,人工神经网络和多元线性回归算法在训练和测试数据集中的平均绝对误差值都较高。CatBoost 算法在绝对百分比差的平均值方面优于其他算法,在训练数据集中达到了 0.302136%。在训练数据集中,CatBoost 算法的均方根误差值最低,为 1.680768 nm,表明其预测值与实际值的平均偏差较小。这种研究材料特性的方法有可能减少爱迪生式方法所涉及的成本和时间,从而缩短确定激励的漫长实验室实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
145
审稿时长
2.5 months
期刊介绍: Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.
期刊最新文献
Influence of Rare Earth Yb3+ Dopant on the Spectroscopic Properties of Manganese Ferrite Nanoparticles Structural and Photoluminescence Studies of p-(n-heptyl) Benzoic Acid Liquid Crystals Dispersed with ZnO Nanoparticles Spectroscopic Studies on Plant Extract Mediated ZnO Nanoparticles as a Potential Cytotoxic Agent Influence of Interatomic Collisions on Intra-Doppler Absorption Resonances in Thin Gas Cells Study on the Detection Method of Soil-Motor Oil Contamination Combined with Genetic Algorithm Spectral Wavelength Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1