Carina Silke Hanser, Per Erik Vullum, Antonius Theodorus Johannes van Helvoort, Fabian Dietmar Schmitz, Tobias Häger, Roman Botcharnikov, Bodil Holst
{"title":"Atomic resolution transmission electron microscopy visualisation of channel occupancy in beryl in different crystallographic directions","authors":"Carina Silke Hanser, Per Erik Vullum, Antonius Theodorus Johannes van Helvoort, Fabian Dietmar Schmitz, Tobias Häger, Roman Botcharnikov, Bodil Holst","doi":"10.1007/s00269-024-01285-6","DOIUrl":null,"url":null,"abstract":"<div><p>The causes of colour in beryl have been a research topic for decades. For some varieties, such as emerald (green, coloured by Cr<sup>3+</sup> and/or V<sup>3+</sup>), the main cause of colour is substitutions by metal atoms within the framework. However, the causes for the yellow and blue colours in heliodor, golden beryl and aquamarine are still debated. It is generally agreed that Fe ions are responsible for the colour, but there are differing conclusions about the valence states of these ions, the occupied positions and the colour-inducing processes involved. The colour of aquamarine is commonly attributed to intervalence charge transfer (IVCT) between Fe<sup>3+</sup> and Fe<sup>2+</sup>. Various combinations of sites have been proposed to host the Fe ions engaging in this IVCT. Here we present a new approach to address the topic of colour generation: atomic resolution scanning transmission electron microscopy (STEM). For the first time, atomic resolution images of a beryl (natural aquamarine) are presented in the three crystallographic directions [0001], [1-210] and [1-100]. Ions are clearly resolved in the channels. From the ratio of channel occupation and the correlation of the atoms per formula unit (apfu) calculations we conclude that Fe resides in the framework, not in the channels. The projections in the [1-210] direction directly show that the cavity channel site 2<i>a</i> is occupied, most likely by Cs, in agreement with recent results in the literature.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01285-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01285-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The causes of colour in beryl have been a research topic for decades. For some varieties, such as emerald (green, coloured by Cr3+ and/or V3+), the main cause of colour is substitutions by metal atoms within the framework. However, the causes for the yellow and blue colours in heliodor, golden beryl and aquamarine are still debated. It is generally agreed that Fe ions are responsible for the colour, but there are differing conclusions about the valence states of these ions, the occupied positions and the colour-inducing processes involved. The colour of aquamarine is commonly attributed to intervalence charge transfer (IVCT) between Fe3+ and Fe2+. Various combinations of sites have been proposed to host the Fe ions engaging in this IVCT. Here we present a new approach to address the topic of colour generation: atomic resolution scanning transmission electron microscopy (STEM). For the first time, atomic resolution images of a beryl (natural aquamarine) are presented in the three crystallographic directions [0001], [1-210] and [1-100]. Ions are clearly resolved in the channels. From the ratio of channel occupation and the correlation of the atoms per formula unit (apfu) calculations we conclude that Fe resides in the framework, not in the channels. The projections in the [1-210] direction directly show that the cavity channel site 2a is occupied, most likely by Cs, in agreement with recent results in the literature.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)