Junmei Luo, Shufeng Bo, Seohyun Park, Beom-Kyeong Park, Oi Lun Li
{"title":"Plasma-engineered FeSe2-encapsulated carbon composites with enhanced kinetics for high-performance lithium and sodium ion batteries","authors":"Junmei Luo, Shufeng Bo, Seohyun Park, Beom-Kyeong Park, Oi Lun Li","doi":"10.1007/s42823-024-00771-9","DOIUrl":null,"url":null,"abstract":"<div><p>Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe<sub>2</sub> nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode (FeSe<sub>2</sub>@C<sub><i>2</i></sub>) exhibits outstanding reversible capacity of 853.1 mAh g<sup>−1</sup> after 150 cycles and exceptional rate capacity of 444.9 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup> for Li<sup>+</sup> storage. In Na<sup>+</sup> batteries, it possesses a relatively high capacity of 433.7 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> as well as good cycle stability. The plasma-engineered FeSe<sub>2</sub>@C<sub><i>2</i></sub> composite, which profits from synergistic effect of small FeSe<sub>2</sub> NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2421 - 2433"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00771-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode (FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g−1 after 150 cycles and exceptional rate capacity of 444.9 mAh g−1 at 5.0 A g−1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g−1 at 0.1 A g−1 as well as good cycle stability. The plasma-engineered FeSe2@C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.