Preliminary Data Processing of the MSU-GS/VE Device aboard the Arktika-M No. 1 Highly Elliptical Satellite Using Machine Learning Methods

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Russian Meteorology and Hydrology Pub Date : 2024-06-27 DOI:10.3103/s1068373924040022
V. V. Asmus, V. D. Bloshchinskiy, L. S. Kramareva, M. O. Kuchma, A. A. Filei
{"title":"Preliminary Data Processing of the MSU-GS/VE Device aboard the Arktika-M No. 1 Highly Elliptical Satellite Using Machine Learning Methods","authors":"V. V. Asmus, V. D. Bloshchinskiy, L. S. Kramareva, M. O. Kuchma, A. A. Filei","doi":"10.3103/s1068373924040022","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper presents the research work aimed at improving the quality characteristics of information products based on the MSU-GS/VE radiometer aboard the Arktika-M No. 1 satellite, as well as at obtaining data preprocessing products. All described methods are based on using machine learning algorithms, namely, neural networks of various architectures. The results of developing a technology for minimizing the interference that occurs in the channels of the satellite device are provided. The work on detecting cloud formations based on processing the channel data in the visible and infrared ranges is presented. It is shown that the use of neural networks makes it possible to implement automatic algorithms for obtaining thematic products that take into account various factors and have an accuracy that is commensurate with statistical and physical approaches and reduces the time of satellite data processing.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040022","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the research work aimed at improving the quality characteristics of information products based on the MSU-GS/VE radiometer aboard the Arktika-M No. 1 satellite, as well as at obtaining data preprocessing products. All described methods are based on using machine learning algorithms, namely, neural networks of various architectures. The results of developing a technology for minimizing the interference that occurs in the channels of the satellite device are provided. The work on detecting cloud formations based on processing the channel data in the visible and infrared ranges is presented. It is shown that the use of neural networks makes it possible to implement automatic algorithms for obtaining thematic products that take into account various factors and have an accuracy that is commensurate with statistical and physical approaches and reduces the time of satellite data processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习方法对 Arktika-M 1 号高椭圆卫星上的 MSU-GS/VE 装置进行初步数据处理
摘要本文介绍了旨在改进基于 Arktika-M 1 号卫星上 MSU-GS/VE 辐射计的信息产 品质量特性以及获取数据预处理产品的研究工作。所有描述的方法都基于使用机器学习算法,即各种结构的神经网络。提供了最大限度减少卫星设备信道干扰的技术开发成果。介绍了基于可见光和红外范围信道数据处理的云层探测工作。结果表明,使用神经网络可以实现自动算法,获得考虑到各种因素的专题产品,其精确度与统计和物理方法相当,并缩短了卫星数据处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
期刊最新文献
Extreme Heat Waves and Extreme Summer Seasons in European Russia Influence of the Summer Changes in Large-scale Atmospheric Circulation on the Vertical Fluxes of Heat and Moisture in Russian Landscape Zones Variational Assimilation of the SMAP Surface Soil Moisture Retrievals into an Integrated Urban Land Model Features of the Thermal Regime of the Middle Atmosphere over Western Siberia from the Data of Many-year Lidar Monitoring Analysis of the Variations in the Lightning Activity of a Hail Process (August 19, 2015, the North Caucasus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1