{"title":"Probing the Ionosphere with Pulses from the Pulsar B2016+28 at a Frequency of 324 MHz","authors":"M. S. Burgin, M. V. Popov","doi":"10.1134/S1063772924700276","DOIUrl":null,"url":null,"abstract":"<p>Using ground-space VLBI data from the RadioAstron project archive, the phase distortions of the cross-spectrum caused by the ionosphere have been calculated and their influence on the results of determination of the visibility function has been studied. The Arecibo Observatory’s 300-m antenna served as the ground station for the interferometer. The separation of ionospheric phase distortions from the influence of the interstellar and interplanetary medium and instrumental errors is based on different frequency dependencies of these effects. The amplitude of ionospheric phase variation caused by electron density fluctuations in the ionosphere above the Arecibo radio telescope is several radians per observation session of about one hour. The structure function of phase variations indicates a continuous spectrum of electron density fluctuations at typical times of <span>\\( \\gtrsim \\)</span>2–5 min with no pronounced signs of quasi-periodic processes. Ionospheric phase f-luctuations during pulsar observations increase the width of the maximum of the amplitude of the visibility function as a function of the residual fringe rate by 5–10 mHz with a decrease in the value at the maximum of <span>\\( \\approx {\\kern 1pt} 10\\% \\)</span>. When constructing images of radio galaxies and quasars from ground-based VLBI observations, these phase shifts can significantly distort the final results.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"68 3","pages":"257 - 267"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772924700276","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using ground-space VLBI data from the RadioAstron project archive, the phase distortions of the cross-spectrum caused by the ionosphere have been calculated and their influence on the results of determination of the visibility function has been studied. The Arecibo Observatory’s 300-m antenna served as the ground station for the interferometer. The separation of ionospheric phase distortions from the influence of the interstellar and interplanetary medium and instrumental errors is based on different frequency dependencies of these effects. The amplitude of ionospheric phase variation caused by electron density fluctuations in the ionosphere above the Arecibo radio telescope is several radians per observation session of about one hour. The structure function of phase variations indicates a continuous spectrum of electron density fluctuations at typical times of \( \gtrsim \)2–5 min with no pronounced signs of quasi-periodic processes. Ionospheric phase f-luctuations during pulsar observations increase the width of the maximum of the amplitude of the visibility function as a function of the residual fringe rate by 5–10 mHz with a decrease in the value at the maximum of \( \approx {\kern 1pt} 10\% \). When constructing images of radio galaxies and quasars from ground-based VLBI observations, these phase shifts can significantly distort the final results.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.