{"title":"A Deep Multimodal Fusion and Multitasking Trajectory Prediction Model for Typhoon Trajectory Prediction to Reduce Flight Scheduling Cancellation","authors":"Jun Tang, Wanting Qin, Qingtao Pan, Songyang Lao","doi":"10.23919/jsee.2024.000042","DOIUrl":null,"url":null,"abstract":"Natural events have had a significant impact on overall flight activity, and the aviation industry plays a vital role in helping society cope with the impact of these events. As one of the most impactful weather typhoon seasons appears and continues, airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms. This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation. The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules, and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction. With more dependable data accuracy, problems can be analysed rapidly and more efficiently, enabling better decision-making with a proactive versus reactive posture. When multiple modalities coexist, features can be extracted from them simultaneously to supplement each other's information. An actual case study, the typhoon Lichma that swept China in 2019, has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000042","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural events have had a significant impact on overall flight activity, and the aviation industry plays a vital role in helping society cope with the impact of these events. As one of the most impactful weather typhoon seasons appears and continues, airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms. This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation. The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules, and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction. With more dependable data accuracy, problems can be analysed rapidly and more efficiently, enabling better decision-making with a proactive versus reactive posture. When multiple modalities coexist, features can be extracted from them simultaneously to supplement each other's information. An actual case study, the typhoon Lichma that swept China in 2019, has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.