A biologically-inspired mesh moving method for cyclic motions mesh fatigue

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-06-21 DOI:10.1007/s00466-024-02514-z
G. E. Carr, N. Biocca, S. A. Urquiza
{"title":"A biologically-inspired mesh moving method for cyclic motions mesh fatigue","authors":"G. E. Carr, N. Biocca, S. A. Urquiza","doi":"10.1007/s00466-024-02514-z","DOIUrl":null,"url":null,"abstract":"<p>Moving boundaries and interfaces are commonly encountered in fluid flow simulations. For instance, fluid–structure interaction simulations require the formulation of the problem in moving and/or deformable domains, making the mesh distortion an issue of concern when it is required to guarantee the accuracy of the numerical model predictions. In addition, traditional elasticity-based mesh motion methods accumulate permanent mesh distortions when cyclic motions occur. In this work, we exploit a biologically-inspired framework for the mesh optimization at the same time it is moved to solve cyclic and nearly cyclic domain motions. Our work is in the framework introduced in Takizawa et al. (Comput Mech 65:1567–1591, 2020) under the name“low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state”. This mesh optimization/motion method is inspired by the mechanobiology of soft tissues, particularly those present in arterial walls, which feature an outstanding capacity to adapt to various mechanical stimuli through adaptive mechanisms such as growth and remodeling. This method adopts different reference configurations for each constituent, namely ground substance and fibers. Considering the optimization features of the adopted framework, it performs straightforwardly for cyclic motion with no cycle-to-cycle mesh distortion accumulation. Numerical experiments in both 2D and 3D using simplicial finite element meshes subjected to cyclic loads are reported. The results indicate that BIMO performance is better than the linear-elasticity mesh moving method in all test cases the two methods are compared.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02514-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Moving boundaries and interfaces are commonly encountered in fluid flow simulations. For instance, fluid–structure interaction simulations require the formulation of the problem in moving and/or deformable domains, making the mesh distortion an issue of concern when it is required to guarantee the accuracy of the numerical model predictions. In addition, traditional elasticity-based mesh motion methods accumulate permanent mesh distortions when cyclic motions occur. In this work, we exploit a biologically-inspired framework for the mesh optimization at the same time it is moved to solve cyclic and nearly cyclic domain motions. Our work is in the framework introduced in Takizawa et al. (Comput Mech 65:1567–1591, 2020) under the name“low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state”. This mesh optimization/motion method is inspired by the mechanobiology of soft tissues, particularly those present in arterial walls, which feature an outstanding capacity to adapt to various mechanical stimuli through adaptive mechanisms such as growth and remodeling. This method adopts different reference configurations for each constituent, namely ground substance and fibers. Considering the optimization features of the adopted framework, it performs straightforwardly for cyclic motion with no cycle-to-cycle mesh distortion accumulation. Numerical experiments in both 2D and 3D using simplicial finite element meshes subjected to cyclic loads are reported. The results indicate that BIMO performance is better than the linear-elasticity mesh moving method in all test cases the two methods are compared.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对循环运动网格疲劳的生物启发网格移动方法
在流体流动模拟中经常会遇到移动边界和界面。例如,流体与结构相互作用模拟需要在移动和/或可变形的域中进行问题表述,因此,当需要保证数值模型预测的准确性时,网格畸变是一个值得关注的问题。此外,当发生周期性运动时,传统的基于弹性的网格运动方法会累积永久性网格畸变。在这项工作中,我们利用受生物启发的网格优化框架,同时将其用于解决循环和近似循环的域运动。我们的工作是在 Takizawa 等人(Comput Mech 65:1567-1591, 2020)介绍的 "基于纤维增强超弹性和优化零应力状态的低失真网格移动方法 "框架下进行的。这种网格优化/移动方法的灵感来自软组织的机械生物学,尤其是存在于动脉壁中的软组织,它们通过生长和重塑等适应机制,具有适应各种机械刺激的出色能力。该方法对每种成分(即基质和纤维)采用不同的参考配置。考虑到所采用框架的优化特性,该方法可直接用于循环运动,且无循环间网格畸变累积。报告使用简约有限元网格进行了二维和三维数值实验,并承受了循环载荷。结果表明,在两种方法比较的所有测试案例中,BIMO 的性能都优于线性弹性网格移动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1