Post-modification engineering of cerium metal-organic frameworks for efficient visible light-driven water oxidation

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-04 DOI:10.1007/s12598-024-02844-0
Lin-Zhu Zhang, Lu Chen, Gui-Yang Yan, Ruo-Wen Liang, Hong-Hui Ou
{"title":"Post-modification engineering of cerium metal-organic frameworks for efficient visible light-driven water oxidation","authors":"Lin-Zhu Zhang,&nbsp;Lu Chen,&nbsp;Gui-Yang Yan,&nbsp;Ruo-Wen Liang,&nbsp;Hong-Hui Ou","doi":"10.1007/s12598-024-02844-0","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) are highly desirable for promising photocatalytic water splitting, but their practical application is greatly limited due to their unstable chemical properties and insufficient visible light response as well as low charge-carries utilization, especially in photocatalytic O<sub>2</sub> production. Herein, we present a post-modification engineering to modulate cerium metal-organic frameworks (Ce-MOFs) for realizing efficient photocatalytic water oxidation to liberate O<sub>2</sub> by visible light. The one-step partial oxidation strategy is adopted to modify pristine Ce-MOFs, yielding the new Ce-MOFs (MV-Ce-MOFs) with mixed valence of Ce<sup>3+</sup>/Ce<sup>4+</sup>. Creating the Ce nodes of a mixed valence state can effectively extend the optical absorption to the visible region, expose more catalytically active sites and inhibit the recombination of photoinduced charges. Consequently, the MV-Ce-MOFs exhibit high activity for photocatalytic O<sub>2</sub> evolution under visible light, manifesting an impressive 1.6% apparent quantum efficiency (AQY) under monochromatic irradiation of 405 nm. The regulation engineering of MOF metal node valence heralds a new paradigm for designing MOF-based photocatalysts.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 11","pages":"5802 - 5812"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02844-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) are highly desirable for promising photocatalytic water splitting, but their practical application is greatly limited due to their unstable chemical properties and insufficient visible light response as well as low charge-carries utilization, especially in photocatalytic O2 production. Herein, we present a post-modification engineering to modulate cerium metal-organic frameworks (Ce-MOFs) for realizing efficient photocatalytic water oxidation to liberate O2 by visible light. The one-step partial oxidation strategy is adopted to modify pristine Ce-MOFs, yielding the new Ce-MOFs (MV-Ce-MOFs) with mixed valence of Ce3+/Ce4+. Creating the Ce nodes of a mixed valence state can effectively extend the optical absorption to the visible region, expose more catalytically active sites and inhibit the recombination of photoinduced charges. Consequently, the MV-Ce-MOFs exhibit high activity for photocatalytic O2 evolution under visible light, manifesting an impressive 1.6% apparent quantum efficiency (AQY) under monochromatic irradiation of 405 nm. The regulation engineering of MOF metal node valence heralds a new paradigm for designing MOF-based photocatalysts.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可见光驱动的高效水氧化的铈金属有机框架后修饰工程
金属有机框架(MOFs)具有广阔的光催化水分离前景,但由于其化学性质不稳定、对可见光响应不足以及电荷携带利用率低等原因,其实际应用受到很大限制,尤其是在光催化产生 O2 方面。在此,我们提出了一种后修饰工程方法来调节铈金属有机框架(Ce-MOFs),以实现高效的光催化水氧化,从而在可见光下释放出 O2。该研究采用一步部分氧化策略对原始 Ce-MOFs 进行改性,得到了具有 Ce3+/Ce4+ 混合价的新 Ce-MOFs (MV-Ce-MOFs)。创建混合价态的 Ce 节点可以有效地将光吸收扩展到可见光区域,暴露出更多的催化活性位点,并抑制光诱导电荷的重组。因此,MV-Ce-MOFs 在可见光下具有很高的光催化 O2 演化活性,在 405 纳米的单色光照射下,表观量子效率(AQY)达到了令人印象深刻的 1.6%。MOF 金属节点价态的调节工程预示着设计基于 MOF 的光催化剂的新范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1