Basket Options with Volatility Skew: Calibrating a Local Volatility Model by Sample Rearrangement

Nicola F. Zaugg, Lech A. Grzelak
{"title":"Basket Options with Volatility Skew: Calibrating a Local Volatility Model by Sample Rearrangement","authors":"Nicola F. Zaugg, Lech A. Grzelak","doi":"arxiv-2407.02901","DOIUrl":null,"url":null,"abstract":"The pricing of derivatives tied to baskets of assets demands a sophisticated\nframework that aligns with the available market information to capture the\nintricate non-linear dependency structure among the assets. We describe the\ndynamics of the multivariate process of constituents with a copula model and\npropose an efficient method to extract the dependency structure from the\nmarket. The proposed method generates coherent sets of samples of the\nconstituents process through systematic sampling rearrangement. These samples\nare then utilized to calibrate a local volatility model (LVM) of the basket\nprocess, which is used to price basket derivatives. We show that the method is\ncapable of efficiently pricing basket options based on a large number of basket\nconstituents, accomplishing the calibration process within a matter of seconds,\nand achieving near-perfect calibration to the index options of the market.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pricing of derivatives tied to baskets of assets demands a sophisticated framework that aligns with the available market information to capture the intricate non-linear dependency structure among the assets. We describe the dynamics of the multivariate process of constituents with a copula model and propose an efficient method to extract the dependency structure from the market. The proposed method generates coherent sets of samples of the constituents process through systematic sampling rearrangement. These samples are then utilized to calibrate a local volatility model (LVM) of the basket process, which is used to price basket derivatives. We show that the method is capable of efficiently pricing basket options based on a large number of basket constituents, accomplishing the calibration process within a matter of seconds, and achieving near-perfect calibration to the index options of the market.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有波动偏差的一篮子期权:通过样本重排校准局部波动率模型
与一篮子资产挂钩的衍生品的定价需要一个复杂的框架,该框架应与可用的市场信息保持一致,以捕捉资产之间错综复杂的非线性依赖结构。我们用 copula 模型描述了成分股多变量过程的动力学,并提出了一种从市场中提取依赖结构的有效方法。所提出的方法通过系统的抽样重排,生成成分过程的连贯样本集。然后利用这些样本来校准一篮子过程的局部波动率模型(LVM),该模型用于对一篮子衍生品进行定价。我们的研究表明,该方法能够基于大量篮子成分对篮子期权进行有效定价,在几秒钟内完成校准过程,并实现与市场指数期权近乎完美的校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1