{"title":"Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming","authors":"Jacek Gondzio, Francisco N. C. Sobral","doi":"10.1007/s10589-024-00584-6","DOIUrl":null,"url":null,"abstract":"<p>Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00584-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.