Hot electron effect in high-order harmonic generation from graphene driven by elliptically polarized light

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2024-07-03 DOI:10.1063/5.0212022
Kotaro Nakagawa, Wenwen Mao, Shunsuke A. Sato, Hiroki Ago, Angel Rubio, Yoshihiko Kanemitsu, Hideki Hirori
{"title":"Hot electron effect in high-order harmonic generation from graphene driven by elliptically polarized light","authors":"Kotaro Nakagawa, Wenwen Mao, Shunsuke A. Sato, Hiroki Ago, Angel Rubio, Yoshihiko Kanemitsu, Hideki Hirori","doi":"10.1063/5.0212022","DOIUrl":null,"url":null,"abstract":"We studied high-order harmonic generation (HHG) in graphene driven by either linearly or elliptically polarized mid-infrared (MIR) light, and we additionally applied terahertz (THz) pulses to modulate the electron distribution in graphene. The high-harmonic spectrum obtained using linearly polarized MIR light contains only odd-order harmonics. We found that the intensities of the fifth- and seventh-order harmonics are reduced by the modulation with the THz pulses. In addition, we found that the THz-induced reduction of the seventh-order harmonic driven by elliptically polarized MIR light (at ellipticity ε = 0.3) is larger than that of seventh-order harmonic driven by linearly polarized MIR light (ε = 0). The observed behavior can be reproduced by theoretical calculations that consider different electron temperatures (caused by the THz pulses). Furthermore, the observed stronger suppression of HHG driven by elliptically polarized light reveals the following: in the case of elliptically polarized light, the generation of harmonics via interband transitions to conduction-band states that are closer to the Dirac point is more important than in the case of linearly polarized light. In other words, the quantum pathways via interband transitions to low-energy states are the origin of the enhancement of HHG that can be achieved in graphene by using elliptically polarized light.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212022","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We studied high-order harmonic generation (HHG) in graphene driven by either linearly or elliptically polarized mid-infrared (MIR) light, and we additionally applied terahertz (THz) pulses to modulate the electron distribution in graphene. The high-harmonic spectrum obtained using linearly polarized MIR light contains only odd-order harmonics. We found that the intensities of the fifth- and seventh-order harmonics are reduced by the modulation with the THz pulses. In addition, we found that the THz-induced reduction of the seventh-order harmonic driven by elliptically polarized MIR light (at ellipticity ε = 0.3) is larger than that of seventh-order harmonic driven by linearly polarized MIR light (ε = 0). The observed behavior can be reproduced by theoretical calculations that consider different electron temperatures (caused by the THz pulses). Furthermore, the observed stronger suppression of HHG driven by elliptically polarized light reveals the following: in the case of elliptically polarized light, the generation of harmonics via interband transitions to conduction-band states that are closer to the Dirac point is more important than in the case of linearly polarized light. In other words, the quantum pathways via interband transitions to low-energy states are the origin of the enhancement of HHG that can be achieved in graphene by using elliptically polarized light.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椭圆偏振光驱动石墨烯产生高阶谐波时的热电子效应
我们研究了线性偏振或椭圆偏振中红外光(MIR)驱动石墨烯产生的高次谐波(HHG),并额外应用太赫兹(THz)脉冲调制石墨烯中的电子分布。使用线性偏振中红外光获得的高次谐波频谱只包含奇阶谐波。我们发现,在太赫兹脉冲的调制下,五阶和七阶谐波的强度降低了。此外,我们还发现太赫兹对椭圆偏振 MIR 光(椭圆度 ε = 0.3 时)驱动的七阶谐波的抑制作用大于线性偏振 MIR 光(ε = 0)驱动的七阶谐波。理论计算考虑了不同的电子温度(由太赫兹脉冲引起),可以再现观察到的行为。此外,观察到的椭圆偏振光对 HHG 的更强抑制揭示了以下几点:与线性偏振光相比,在椭圆偏振光情况下,通过带间跃迁到更接近狄拉克点的导带态来产生谐波更为重要。换句话说,通过带间跃迁到低能态的量子途径是使用椭圆偏振光在石墨烯中增强 HHG 的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Unified theory for frequency combs in ring and Fabry–Perot quantum cascade lasers: An order-parameter equation approach Mid-infrared fiber laser research: Tasks completed and the tasks ahead Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating Tunable topological boundary modes enabled by synthetic translation dimension Optical bias and cryogenic laser readout of a multipixel superconducting nanowire single photon detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1