Electrolyte Tuning with Low Concentration Additive for Dendrite Suppression in Lithium Metal Anodes

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-07-04 DOI:10.1039/d4se00548a
Abiral Baniya, Madan Bahadur Saud, Hansheng Li, M. Bilal Faheem, Yuchen Zhang, Ashok Thapa, Raja Sekhar Bobba, Poojan Indrajeet Kaswekar, Quinn Qiao
{"title":"Electrolyte Tuning with Low Concentration Additive for Dendrite Suppression in Lithium Metal Anodes","authors":"Abiral Baniya, Madan Bahadur Saud, Hansheng Li, M. Bilal Faheem, Yuchen Zhang, Ashok Thapa, Raja Sekhar Bobba, Poojan Indrajeet Kaswekar, Quinn Qiao","doi":"10.1039/d4se00548a","DOIUrl":null,"url":null,"abstract":"Lithium (Li) metal is considered an ideal anode for high energy density storage systems. However, its high reactivity and instability towards organic electrolytes lead to the continuous consumption of electrolytes and Li metal, causing dendrite growth. This induces safety issues, and low cyclability hindering its practical use. Although electrolyte additives are extensively utilized to address these issues, the practice remains an alchemical task with least understanding of their interactions with electrolytic environments. Here, we report a novel electrolyte additive, gadolinium nitrate (Gd(NO3)3) with a low optimal concentration of 3 mM in a Lithium bis(trifluoromethanesulfonyl)imide-Lithium nitrate (LiTFSI-LiNO3) ether-based electrolyte which promotes plating/stripping of Li in nodular morphology, significantly suppressing dendrites and dead Li growth while improving the cycle life, and overall stability of Li metal batteries. A significant reduction of Li-metal electrode overpotential is observed under a current density of 2 mA cm-2. When tested in Li metal battery with LiFePO4 (LFP) cathode at an active mass loading of 4 mg cm-2, capacity retention of 98.33 % is observed at 400 cycles. These stable cycling and enhanced performance are attributed to the formation of a chemically stable, mechanically robust, and ionically conductive solid electrolyte interphase (SEI) layer on the Li metal surface, enabled by the incorporation of Gd(NO3)3 compared to the cells with pristine electrolytes.","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4se00548a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal is considered an ideal anode for high energy density storage systems. However, its high reactivity and instability towards organic electrolytes lead to the continuous consumption of electrolytes and Li metal, causing dendrite growth. This induces safety issues, and low cyclability hindering its practical use. Although electrolyte additives are extensively utilized to address these issues, the practice remains an alchemical task with least understanding of their interactions with electrolytic environments. Here, we report a novel electrolyte additive, gadolinium nitrate (Gd(NO3)3) with a low optimal concentration of 3 mM in a Lithium bis(trifluoromethanesulfonyl)imide-Lithium nitrate (LiTFSI-LiNO3) ether-based electrolyte which promotes plating/stripping of Li in nodular morphology, significantly suppressing dendrites and dead Li growth while improving the cycle life, and overall stability of Li metal batteries. A significant reduction of Li-metal electrode overpotential is observed under a current density of 2 mA cm-2. When tested in Li metal battery with LiFePO4 (LFP) cathode at an active mass loading of 4 mg cm-2, capacity retention of 98.33 % is observed at 400 cycles. These stable cycling and enhanced performance are attributed to the formation of a chemically stable, mechanically robust, and ionically conductive solid electrolyte interphase (SEI) layer on the Li metal surface, enabled by the incorporation of Gd(NO3)3 compared to the cells with pristine electrolytes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用低浓度添加剂调节电解质以抑制锂金属阳极中的枝晶
锂(Li)金属被认为是高能量密度存储系统的理想阳极。然而,锂金属对有机电解质的高反应性和不稳定性导致电解质和锂金属不断消耗,造成枝晶生长。这引发了安全问题,而且循环性低,阻碍了其实际应用。尽管电解质添加剂被广泛用于解决这些问题,但由于对其与电解环境的相互作用了解甚少,因此这种做法仍然是一种炼金术。在此,我们报告了一种新型电解质添加剂--硝酸钆(Gd(NO3)3),其在双(三氟甲磺酰基)亚胺锂-硝酸锂(LiTFSI-LiNO3)醚基电解质中的最佳浓度为 3 mM,可促进锂在结节形态中的电镀/剥离,显著抑制枝晶和死锂的生长,同时提高锂金属电池的循环寿命和整体稳定性。在电流密度为 2 mA cm-2 时,锂金属电极的过电位明显降低。在使用磷酸铁锂(LFP)阴极的锂金属电池中进行测试时,活性质量负载为 4 毫克/厘米-2,400 次循环后容量保持率为 98.33%。与使用原始电解质的电池相比,Gd(NO3)3 的加入使得锂金属表面形成了化学稳定、机械坚固和离子导电的固体电解质相间层(SEI),从而实现了这些稳定的循环和更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Predicting the chemical composition of biocrude from hydrothermal liquefaction of biomasses using a multivariate statistical approach Extraction of turbulent flame structures and dynamic modes with corrected OH-PLIF images for a hydrogen micromix burner A metal-free perylene-porphyrin based covalent organic framework for electrocatalytic hydrogen evolution Techno-economic analysis of a solar-driven biomass pyrolysis plant for bio-oil and biochar production Visible light induced efficient photocatalytic hydrogen production by graphdiyne/CoSe ohmic heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1