Alumina–Titania Nanolaminate Condensers for Hot Programmable Catalysis

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-07-03 DOI:10.1021/acsmaterialslett.4c00652
Kyung-Ryul Oh, Amber Walton, Jason A. Chalmers, Justin A. Hopkins, Jesse R. Canavan, Tzia Ming Onn, Susannah L. Scott, C. Daniel Frisbie, Paul J. Dauenhauer
{"title":"Alumina–Titania Nanolaminate Condensers for Hot Programmable Catalysis","authors":"Kyung-Ryul Oh, Amber Walton, Jason A. Chalmers, Justin A. Hopkins, Jesse R. Canavan, Tzia Ming Onn, Susannah L. Scott, C. Daniel Frisbie, Paul J. Dauenhauer","doi":"10.1021/acsmaterialslett.4c00652","DOIUrl":null,"url":null,"abstract":"<b>N</b>anolaminates composed of thin alternating layers of Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> (ATO) were engineered by using atomic layer deposition as the dielectric material for a Pt-on-carbon catalytic condenser. Investigation assessed synthesis parameters including the deposition temperature, Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> layer thicknesses, total number of layers, and a capping Al<sub>2</sub>O<sub>3</sub> layer on the maximum charge accumulation in the Pt catalyst. The highest capacitance ATO configuration demonstrated a specific capacitance of ∼1200 nF/cm<sup>2</sup> with working voltages of ±5 V, enabling the storage of 4 × 10<sup>13</sup> electrons or holes per cm<sup>2</sup> at room temperature. The ATO devices exhibited enhanced capacitance at elevated temperatures of up to 400 °C, suggesting the suitability of these materials for high-temperature applications. Adsorption of carbon monoxide on the Pt/C-ATO device characterized by grazing incidence infrared spectroscopy showed changes in the surface binding energy of 13.1 ± 0.8 kJ/mol for an applied external voltage bias of ±1 V.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c00652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanolaminates composed of thin alternating layers of Al2O3 and TiO2 (ATO) were engineered by using atomic layer deposition as the dielectric material for a Pt-on-carbon catalytic condenser. Investigation assessed synthesis parameters including the deposition temperature, Al2O3 and TiO2 layer thicknesses, total number of layers, and a capping Al2O3 layer on the maximum charge accumulation in the Pt catalyst. The highest capacitance ATO configuration demonstrated a specific capacitance of ∼1200 nF/cm2 with working voltages of ±5 V, enabling the storage of 4 × 1013 electrons or holes per cm2 at room temperature. The ATO devices exhibited enhanced capacitance at elevated temperatures of up to 400 °C, suggesting the suitability of these materials for high-temperature applications. Adsorption of carbon monoxide on the Pt/C-ATO device characterized by grazing incidence infrared spectroscopy showed changes in the surface binding energy of 13.1 ± 0.8 kJ/mol for an applied external voltage bias of ±1 V.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于热可编程催化的氧化铝-钛纳米层析冷凝器
利用原子层沉积技术,为碳化铂催化冷凝器设计了由 Al2O3 和 TiO2 薄交替层(ATO)组成的纳米层压材料作为介电材料。研究评估了合成参数,包括沉积温度、Al2O3 和 TiO2 层厚度、层总数以及 Al2O3 盖层对铂催化剂中最大电荷积累的影响。最高电容 ATO 配置的比电容为 1200 nF/cm2,工作电压为 ±5 V,室温下每平方厘米可存储 4 × 1013 个电子或空穴。ATO 器件在高达 400 °C 的高温下显示出更强的电容,表明这些材料适合高温应用。通过掠入射红外光谱对一氧化碳在 Pt/C-ATO 器件上的吸附进行表征,结果表明,在施加 ±1 V 的外部电压偏置时,表面结合能的变化为 13.1 ± 0.8 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Self-Assembled Chemo/Photothermal Nanoplatform for Enhanced Cancer Therapy: Sensitizing Photothermal Ablation and Reprogramming Inflammatory Microenvironment Divergent Electrically Conductive Pathways in Yttrium-Based 2- and 3-Dimensional Metal–Organic Frameworks Building Stable Pillar-Layered Metal–Organic Frameworks: Introduction of Unsaturated Bonds for Enhanced Efficiency in C2H2/CO2 Separation Activating Electronic Delocalization: Through-Space Lone-Pair Interactions versus Hydrogen Bonding Bi4O5Br2/COF S-Scheme Heterojunctions for Boosting H2O2 Photoproduction under Air and Pure Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1