首页 > 最新文献

ACS Materials Letters最新文献

英文 中文
Hard–Soft Acid–Base Interactions Control Ionic Conductivity in Molecular-Crystal-Based Electrolytes 硬-软酸碱相互作用控制分子晶体电解质中的离子电导率
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-22 DOI: 10.1021/acsmaterialslett.5c01234
Shujit Chandra Paul, , , Stephanie L. Wunder*, , and , Michael J. Zdilla*, 

The influence of hard and soft base coordination on ionic conductivity was systematically investigated using diamine (hard base)- and dinitrile (soft base)-based ligands in molecular crystal-based solid electrolytes. For molecular crystals (Gln)2LiPF6, (Gln)2CuPF6, (DAB)2LiPF6, and (DAB)2CuPF6 (Gln = glutaronitrile, DAB = 1,4-diaminobutane) with isomorphic crystal structures (P4̅21c space group) and comparable metal–metal (Li+–Li+ or Cu+–Cu+) distances, less favorable soft–hard interactions (Cu+–amine or Li+–nitrile) resulted in nearly 2 orders of magnitude improvement in ionic conductivity compared to the more favorable soft–soft and hard–hard pairings (Cu+–nitrile or Li+–amine). This significant enhancement is attributed to the weaker, more labile coordination between soft nitrile donors and hard Li+ ions or hard -NH2 donors and soft Cu+, facilitating faster ion migration, reinforcing the critical role of Hard–Soft Acid–Base theory (HSAB)-guided coordination chemistry in modulating ion mobility in soft-solid molecular electrolytes, and providing valuable insights to rationally design high-performance solid electrolytes.

采用二胺(硬碱)和二腈(软碱)配体在分子晶体固体电解质中系统地研究了硬、软碱配位对离子电导率的影响。对于具有相同晶体结构(P4 - 21c空间群)和相似金属-金属(Li+ -Li +或Cu+ -Cu +)距离的分子晶体(Gln)2LiPF6、(Gln)2CuPF6、(DAB)2LiPF6和(DAB)2CuPF6 (Gln =戊二腈,DAB = 1,4-二氨基丁烷),较不利的软硬相互作用(Cu+ -胺或Li+ -腈)比较有利的软硬和硬-硬配对(Cu+ -腈或Li+ -胺)的离子电导率提高了近2个数量级。这一显著增强归因于软腈给体与硬Li+离子或硬nh2给体与软Cu+离子之间更弱、更不稳定的配位,促进了离子更快的迁移,强化了硬-软酸碱理论(HSAB)指导的配位化学在软固体分子电解质中调节离子迁移的关键作用,为合理设计高性能固体电解质提供了有价值的见解。
{"title":"Hard–Soft Acid–Base Interactions Control Ionic Conductivity in Molecular-Crystal-Based Electrolytes","authors":"Shujit Chandra Paul,&nbsp;, ,&nbsp;Stephanie L. Wunder*,&nbsp;, and ,&nbsp;Michael J. Zdilla*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01234","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01234","url":null,"abstract":"<p >The influence of hard and soft base coordination on ionic conductivity was systematically investigated using diamine (hard base)- and dinitrile (soft base)-based ligands in molecular crystal-based solid electrolytes. For molecular crystals (Gln)<sub>2</sub>LiPF<sub>6</sub>, (Gln)<sub>2</sub>CuPF<sub>6</sub>, (DAB)<sub>2</sub>LiPF<sub>6</sub>, and (DAB)<sub>2</sub>CuPF<sub>6</sub> (Gln = glutaronitrile, DAB = 1,4-diaminobutane) with isomorphic crystal structures (<i>P</i>4̅2<sub>1</sub><i>c</i> space group) and comparable metal–metal (Li<sup>+</sup>–Li<sup>+</sup> or Cu<sup>+</sup>–Cu<sup>+</sup>) distances, less favorable soft–hard interactions (Cu<sup>+</sup>–amine or Li<sup>+</sup>–nitrile) resulted in nearly 2 orders of magnitude improvement in ionic conductivity compared to the more favorable soft–soft and hard–hard pairings (Cu<sup>+</sup>–nitrile or Li<sup>+</sup>–amine). This significant enhancement is attributed to the weaker, more labile coordination between soft nitrile donors and hard Li<sup>+</sup> ions or hard -NH<sub>2</sub> donors and soft Cu<sup>+</sup>, facilitating faster ion migration, reinforcing the critical role of Hard–Soft Acid–Base theory (HSAB)-guided coordination chemistry in modulating ion mobility in soft-solid molecular electrolytes, and providing valuable insights to rationally design high-performance solid electrolytes.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"470–475"},"PeriodicalIF":8.7,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topochemical Reaction Induces Anisotropy, Decreasing Solid-State Thermal Conductivity 拓扑化学反应诱导各向异性,降低固态导热系数
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-19 DOI: 10.1021/acsmaterialslett.5c01606
Amalie Atassi, , , Sara Makarem, , , James F. Ponder Jr., , , Alex H. Balzer, , , Joshua M. Rinehart, , , Shawn A. Gregory, , , Valentina Pirela, , , Jaime Martín, , , Patrick E. Hopkins, , , Natalie Stingelin, , and , Shannon K. Yee*, 

Realizing organic materials that exhibit a dynamic thermal conductivity requires a fundamental understanding of how molecular structure and processing affect thermal transport. Herein, we demonstrate that the photoinduced polymerization of [2,2′-bi-1H-indene]-1,1′-dione-3,3′-diheptylcarboxylate (BIT) into polyBIT results in over a 4-fold decrease in thermal conductivity as measured on polycrystalline thin-films in the through-plane direction, mostly perpendicular to the chain growth direction. Experimental determination of the material’s decreased heat capacity supports this view. Through theoretical calculations, we attribute this decrease in thermal conductivity in part to induced anisotropy in the polymer. We also discuss the non-negligible changes in morphology, phase transitions, and thermal degradation that serve to limit the thermal depolymerization reaction. This work highlights the different contributions one must consider when designing an organic thermal switch that operates in the solid-state.

实现表现出动态导热性的有机材料需要对分子结构和加工如何影响热传递有基本的了解。在这里,我们证明了光诱导聚合[2,2 ' -bi- h- indee]-1,1 ' -二酮-3,3 ' -二庚基羧酸盐(BIT)成polyBIT导致在多晶薄膜上测量的热导率在穿过平面方向上降低了4倍以上,大部分垂直于链生长方向。对材料热容量下降的实验测定支持了这一观点。通过理论计算,我们将热导率的下降部分归因于聚合物中诱导的各向异性。我们还讨论了不可忽略的形态变化,相变和热降解,以限制热解聚反应。这项工作强调了在设计固态工作的有机热开关时必须考虑的不同贡献。
{"title":"Topochemical Reaction Induces Anisotropy, Decreasing Solid-State Thermal Conductivity","authors":"Amalie Atassi,&nbsp;, ,&nbsp;Sara Makarem,&nbsp;, ,&nbsp;James F. Ponder Jr.,&nbsp;, ,&nbsp;Alex H. Balzer,&nbsp;, ,&nbsp;Joshua M. Rinehart,&nbsp;, ,&nbsp;Shawn A. Gregory,&nbsp;, ,&nbsp;Valentina Pirela,&nbsp;, ,&nbsp;Jaime Martín,&nbsp;, ,&nbsp;Patrick E. Hopkins,&nbsp;, ,&nbsp;Natalie Stingelin,&nbsp;, and ,&nbsp;Shannon K. Yee*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01606","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01606","url":null,"abstract":"<p >Realizing organic materials that exhibit a dynamic thermal conductivity requires a fundamental understanding of how molecular structure and processing affect thermal transport. Herein, we demonstrate that the photoinduced polymerization of [2,2′-bi-1<i>H</i>-indene]-1,1′-dione-3,3′-diheptylcarboxylate (BIT) into polyBIT results in over a 4-fold decrease in thermal conductivity as measured on polycrystalline thin-films in the through-plane direction, mostly perpendicular to the chain growth direction. Experimental determination of the material’s decreased heat capacity supports this view. Through theoretical calculations, we attribute this decrease in thermal conductivity in part to induced anisotropy in the polymer. We also discuss the non-negligible changes in morphology, phase transitions, and thermal degradation that serve to limit the thermal depolymerization reaction. This work highlights the different contributions one must consider when designing an organic thermal switch that operates in the solid-state.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"646–650"},"PeriodicalIF":8.7,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.5c01606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Synthesis of Locally Strained Monolayer WS2 by Chemical Vapor Deposition 化学气相沉积法直接合成局部应变单层WS2
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-19 DOI: 10.1021/acsmaterialslett.5c01468
Liang Li, , , Hongmei Zhang*, , , Junkun Zhou, , , Zidan Peng, , , Bowen Yao, , , Wanqian Wang, , , Chayuan Zeng, , , Chuyun Deng, , , Wei Luo, , , Gang Peng, , and , Guang Wang*, 

The atomic thinness and mechanical flexibility of two-dimensional (2D) transition metal dichalcogenides (TMDs) make strain engineering a powerful strategy for tailoring their functional properties. Nevertheless, conventional strain-engineering methods often suffer from limited spatial control and unwanted sample damage. Here, we report a controlled synthesis of monolayer WS2 with programmable localized strain via a sulfur-rich chemical vapor deposition approach. Atomic-resolution scanning transmission electron microscopy reveals varying degrees of atomic-level local strain, which lead to significant suppression of Raman, photoluminescence, and second-harmonic generation spectral intensities. Furthermore, piezoresponse force microscopy measurements demonstrate a characteristic butterfly-shaped amplitude loop accompanied by near-180° phase switching, indicative of robust ferroelectric behavior. Consistent hysteresis observed in vertical device architectures further confirms the emergence of out-of-plane ferroelectricity. Our work introduces a scalable, damage-free route to create tailored strain landscapes in monolayer TMDs, thereby opening avenues for property control in 2D semiconductors and enabling the design of multifunctional devices.

二维(2D)过渡金属二硫族化合物(TMDs)的原子薄度和机械柔韧性使应变工程成为定制其功能特性的有力策略。然而,传统的应变工程方法往往受到有限的空间控制和不必要的样品损坏。在这里,我们报告了一种通过富硫化学气相沉积方法控制合成具有可编程局部应变的单层WS2。原子分辨率扫描透射电子显微镜显示不同程度的原子级局部应变,导致拉曼,光致发光和二次谐波产生光谱强度的显著抑制。此外,压电响应力显微镜测量结果显示出一个特征的蝴蝶形振幅环路,伴随着近180°的相位切换,表明具有强大的铁电行为。在垂直器件结构中观察到的一致迟滞进一步证实了面外铁电性的出现。我们的工作引入了一种可扩展的、无损伤的路线,以在单层tmd中创建定制的应变景观,从而为2D半导体的属性控制开辟了道路,并使多功能器件的设计成为可能。
{"title":"Direct Synthesis of Locally Strained Monolayer WS2 by Chemical Vapor Deposition","authors":"Liang Li,&nbsp;, ,&nbsp;Hongmei Zhang*,&nbsp;, ,&nbsp;Junkun Zhou,&nbsp;, ,&nbsp;Zidan Peng,&nbsp;, ,&nbsp;Bowen Yao,&nbsp;, ,&nbsp;Wanqian Wang,&nbsp;, ,&nbsp;Chayuan Zeng,&nbsp;, ,&nbsp;Chuyun Deng,&nbsp;, ,&nbsp;Wei Luo,&nbsp;, ,&nbsp;Gang Peng,&nbsp;, and ,&nbsp;Guang Wang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01468","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01468","url":null,"abstract":"<p >The atomic thinness and mechanical flexibility of two-dimensional (2D) transition metal dichalcogenides (TMDs) make strain engineering a powerful strategy for tailoring their functional properties. Nevertheless, conventional strain-engineering methods often suffer from limited spatial control and unwanted sample damage. Here, we report a controlled synthesis of monolayer WS<sub>2</sub> with programmable localized strain via a sulfur-rich chemical vapor deposition approach. Atomic-resolution scanning transmission electron microscopy reveals varying degrees of atomic-level local strain, which lead to significant suppression of Raman, photoluminescence, and second-harmonic generation spectral intensities. Furthermore, piezoresponse force microscopy measurements demonstrate a characteristic butterfly-shaped amplitude loop accompanied by near-180° phase switching, indicative of robust ferroelectric behavior. Consistent hysteresis observed in vertical device architectures further confirms the emergence of out-of-plane ferroelectricity. Our work introduces a scalable, damage-free route to create tailored strain landscapes in monolayer TMDs, thereby opening avenues for property control in 2D semiconductors and enabling the design of multifunctional devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"601–608"},"PeriodicalIF":8.7,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renewable Biobased Vitrimers with Dual Dynamic Networks: High-Performance, Fully Recyclable, and Antimicrobial Materials for Potential Wearable Applications 具有双动态网络的可再生生物基玻璃体:用于潜在可穿戴应用的高性能,完全可回收和抗菌材料
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-16 DOI: 10.1021/acsmaterialslett.5c01380
Hongru Qiang, , , Jiachen Lv, , , Zhenghong Ge, , , Zhen Fan*, , , Yunqing Zhu*, , and , Jianzhong Du*, 

The need for sustainable, high-performance, and recyclable materials is growing, but biobased polymers often lack the necessary durability and functionality. Here, we report a class of biobased, metal-coordinated polyimine vitrimers (MCPVs) engineered through dual Fe3+ coordination sites (imine and methoxy groups) within a Schiff base network. The MCPVs achieved enhanced mechanical performance (tensile strength up to 25.6 MPa, toughness of 23.6 MJ/m3), thermal stability (>298 °C decomposition temperature), and acid/solvent resistance with only Fe3+ loading (5 mol %). The material retains closed-loop recyclability via hydrolysis with >99.9% antimicrobial efficacy against Escherichia coli and Staphylococcus aureus. Integrated with conductive layers, MCPVs enable fully recyclable wearable sensors for real-time motion detection, maintaining functionality after multiple recycling cycles. This work highlights a design strategy between sustainability and high performance, offering a scalable blueprint for circular-economy electronics and polymers.

对可持续、高性能和可回收材料的需求正在增长,但生物基聚合物往往缺乏必要的耐用性和功能性。在这里,我们报道了一类生物基,金属配位的聚亚胺vitrimers (mcpv),通过Schiff碱网络中的双Fe3+配位位点(亚胺和甲氧基)进行工程设计。mcpv的力学性能(抗拉强度高达25.6 MPa,韧性为23.6 MJ/m3),热稳定性(>;298℃分解温度)以及耐酸/耐溶剂性均得到了增强,仅加载Fe3+ (5 mol %)。该材料通过水解保持闭环可回收性,对大肠杆菌和金黄色葡萄球菌的抗菌效率为99.9%。mcpv与导电层集成,使可完全回收的可穿戴传感器能够进行实时运动检测,在多次回收循环后保持功能。这项工作强调了可持续性和高性能之间的设计策略,为循环经济电子和聚合物提供了可扩展的蓝图。
{"title":"Renewable Biobased Vitrimers with Dual Dynamic Networks: High-Performance, Fully Recyclable, and Antimicrobial Materials for Potential Wearable Applications","authors":"Hongru Qiang,&nbsp;, ,&nbsp;Jiachen Lv,&nbsp;, ,&nbsp;Zhenghong Ge,&nbsp;, ,&nbsp;Zhen Fan*,&nbsp;, ,&nbsp;Yunqing Zhu*,&nbsp;, and ,&nbsp;Jianzhong Du*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01380","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01380","url":null,"abstract":"<p >The need for sustainable, high-performance, and recyclable materials is growing, but biobased polymers often lack the necessary durability and functionality. Here, we report a class of biobased, metal-coordinated polyimine vitrimers (MCPVs) engineered through dual Fe<sup>3+</sup> coordination sites (imine and methoxy groups) within a Schiff base network. The MCPVs achieved enhanced mechanical performance (tensile strength up to 25.6 MPa, toughness of 23.6 MJ/m<sup>3</sup>), thermal stability (&gt;298 °C decomposition temperature), and acid/solvent resistance with only Fe<sup>3+</sup> loading (5 mol %). The material retains closed-loop recyclability via hydrolysis with &gt;99.9% antimicrobial efficacy against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. Integrated with conductive layers, MCPVs enable fully recyclable wearable sensors for real-time motion detection, maintaining functionality after multiple recycling cycles. This work highlights a design strategy between sustainability and high performance, offering a scalable blueprint for circular-economy electronics and polymers.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"526–535"},"PeriodicalIF":8.7,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally Evaporated 0D/3D Perovskite Heterostructures with LiF Interlayer for Spectrally Stable Pure-Red Perovskite Light-Emitting Diodes 光谱稳定的纯红色钙钛矿发光二极管的热蒸发0D/3D钙钛矿异质结构与LiF中间层
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1021/acsmaterialslett.5c01508
Min Hyeong Lee, , , Donghan Kim, , , Jongbeom Kim, , , Dongeun Kim, , , Jinkyu Yang, , , Yong-Jun Choi, , and , Myoung Hoon Song*, 

Thermally evaporated perovskite light-emitting diodes (PeLEDs) offer high reproducibility and scalability, making them promising for next-generation displays. However, achieving spectrally stable pure-red mixed-halide PeLEDs that meet the Rec.2020 color standard remains challenging due to halide segregation and poor crystallinity. Here, we fabricated thermally evaporated pure-red PeLEDs by integrating 0D/3D Cs4Pb(IxBr1–x)6/CsPb(IxBr1–x)3 heterostructures with a LiF interlayer. Excess CsI promotes 0D Cs4Pb(IxBr1–x)6 formation and lattice expansion, facilitating wavelength tunability and improved optoelectronic performance via defect passivation and enhanced exciton binding. The LiF interlayer further mitigates interfacial defects as F passivates undercoordinated Pb2+ and halide vacancies, while Li+ acts as a diffusion barrier to suppress halide migration, leading to reduced nonradiative recombination and excellent spectral stability. The optimized device achieves an EQE of 8.15%, luminance of 1786 cd/m2, and T50 lifetime of 234 min at 1 mA/cm2. A 49 cm2 perovskite film shows uniform photoluminescence, confirming excellent scalability for a commercial pure-red display.

热蒸发钙钛矿发光二极管(PeLEDs)具有高再现性和可扩展性,使其成为下一代显示器的理想选择。然而,由于卤化物偏析和结晶度差,实现符合Rec.2020颜色标准的光谱稳定的纯红色混合卤化物pled仍然具有挑战性。在这里,我们通过将0D/3D Cs4Pb(IxBr1-x)6/CsPb(IxBr1-x)3异质结构与LiF中间层集成来制备热蒸发纯红pled。过量的CsI促进了0D Cs4Pb(IxBr1-x)6的形成和晶格扩展,通过缺陷钝化和增强激子结合促进了波长可调性和光电性能的提高。LiF夹层进一步减轻了界面缺陷,因为F钝化了Pb2+和卤化物空位,而Li+作为扩散屏障抑制了卤化物迁移,从而减少了非辐射复合和优异的光谱稳定性。优化后的器件EQE为8.15%,亮度为1786 cd/m2,在1ma /cm2下T50寿命为234 min。49平方厘米的钙钛矿薄膜显示出均匀的光致发光,证实了商业纯红色显示器的优异可扩展性。
{"title":"Thermally Evaporated 0D/3D Perovskite Heterostructures with LiF Interlayer for Spectrally Stable Pure-Red Perovskite Light-Emitting Diodes","authors":"Min Hyeong Lee,&nbsp;, ,&nbsp;Donghan Kim,&nbsp;, ,&nbsp;Jongbeom Kim,&nbsp;, ,&nbsp;Dongeun Kim,&nbsp;, ,&nbsp;Jinkyu Yang,&nbsp;, ,&nbsp;Yong-Jun Choi,&nbsp;, and ,&nbsp;Myoung Hoon Song*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01508","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01508","url":null,"abstract":"<p >Thermally evaporated perovskite light-emitting diodes (PeLEDs) offer high reproducibility and scalability, making them promising for next-generation displays. However, achieving spectrally stable pure-red mixed-halide PeLEDs that meet the Rec.2020 color standard remains challenging due to halide segregation and poor crystallinity. Here, we fabricated thermally evaporated pure-red PeLEDs by integrating 0D/3D Cs<sub>4</sub>Pb(I<sub><i>x</i></sub>Br<sub>1–<i>x</i></sub>)<sub>6</sub>/CsPb(I<sub><i>x</i></sub>Br<sub>1–<i>x</i></sub>)<sub>3</sub> heterostructures with a LiF interlayer. Excess CsI promotes 0D Cs<sub>4</sub>Pb(I<sub><i>x</i></sub>Br<sub>1–<i>x</i></sub>)<sub>6</sub> formation and lattice expansion, facilitating wavelength tunability and improved optoelectronic performance via defect passivation and enhanced exciton binding. The LiF interlayer further mitigates interfacial defects as F<sup>–</sup> passivates undercoordinated Pb<sup>2+</sup> and halide vacancies, while Li<sup>+</sup> acts as a diffusion barrier to suppress halide migration, leading to reduced nonradiative recombination and excellent spectral stability. The optimized device achieves an EQE of 8.15%, luminance of 1786 cd/m<sup>2</sup>, and T<sub>50</sub> lifetime of 234 min at 1 mA/cm<sup>2</sup>. A 49 cm<sup>2</sup> perovskite film shows uniform photoluminescence, confirming excellent scalability for a commercial pure-red display.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"628–635"},"PeriodicalIF":8.7,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Chemistry Facilitated Understanding of Supramolecular Chirality Regulation by Metal Ions 理论化学有助于理解金属离子对超分子手性的调控
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1021/acsmaterialslett.5c01526
Yiteng Cai, , , Hao Li, , , Shihao Zang, , , Kaerdun Liu, , , Zhichen Pu, , , Hongpeng Li, , , Huaiyu Song, , , Shuitao Gao, , , Yunlong Xiao*, , , Jianbin Huang, , and , Yun Yan*, 

Supramolecular chirality regulation by metal ions remains a fundamental challenge, yet the underlying molecular origins have been poorly understood. Herein, we report a combined experimental and theoretical study to unveil how metal ions dictate supramolecular chirality inversion in folate-based hydrogels. Folate-Cu2+ and Folate-Zn2+ are observed to display M- and P-form Cotton splitting, respectively. DFT calculations reveal that the coordination of Cu2+ and Zn2+ at the α-carboxylate headgroups of folate induces inversed folate conformation. Energy calculations demonstrate that the helical handedness of tetramer stacks is governed by interlayer coordination, as the P-form Folate-Zn2+ and the M-form Folate-Cu2+ tetramer stacks exhibit lower energy than their counterparts, respectively. This mechanism can be generalized to other metal ions (Ca2+, Pb2+, Mn2+, and Cd2+), where the supramolecular chirality of Folate-M2+ systems can be accurately predicted by DFT calculation. This work establishes a molecular-level picture for metal-ion-mediated chirality control, providing a predictive tool for rational design of chiral supramolecular materials.

金属离子的超分子手性调控仍然是一个根本性的挑战,但其潜在的分子起源却知之甚少。在此,我们报告了一项结合实验和理论的研究,以揭示金属离子如何决定叶酸基水凝胶中的超分子手性反转。观察到叶酸- cu2 +和叶酸- zn2 +分别表现为M型和p型棉花分裂。DFT计算表明,在叶酸α-羧酸基团上Cu2+和Zn2+的配位诱导了叶酸逆构象。能量计算表明,四聚体堆叠的螺旋手性受层间配位的控制,p型叶酸- zn2 +和m型叶酸- cu2 +四聚体堆叠的能量分别低于其对应的四聚体堆叠。这种机制可以推广到其他金属离子(Ca2+, Pb2+, Mn2+和Cd2+),其中叶酸- m2 +体系的超分子手性可以通过DFT计算准确预测。本研究建立了金属离子介导手性调控的分子水平图谱,为手性超分子材料的合理设计提供了预测工具。
{"title":"Theoretical Chemistry Facilitated Understanding of Supramolecular Chirality Regulation by Metal Ions","authors":"Yiteng Cai,&nbsp;, ,&nbsp;Hao Li,&nbsp;, ,&nbsp;Shihao Zang,&nbsp;, ,&nbsp;Kaerdun Liu,&nbsp;, ,&nbsp;Zhichen Pu,&nbsp;, ,&nbsp;Hongpeng Li,&nbsp;, ,&nbsp;Huaiyu Song,&nbsp;, ,&nbsp;Shuitao Gao,&nbsp;, ,&nbsp;Yunlong Xiao*,&nbsp;, ,&nbsp;Jianbin Huang,&nbsp;, and ,&nbsp;Yun Yan*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01526","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01526","url":null,"abstract":"<p >Supramolecular chirality regulation by metal ions remains a fundamental challenge, yet the underlying molecular origins have been poorly understood. Herein, we report a combined experimental and theoretical study to unveil how metal ions dictate supramolecular chirality inversion in folate-based hydrogels. Folate-Cu<sup>2+</sup> and Folate-Zn<sup>2+</sup> are observed to display M- and P-form Cotton splitting, respectively. DFT calculations reveal that the coordination of Cu<sup>2+</sup> and Zn<sup>2+</sup> at the α-carboxylate headgroups of folate induces inversed folate conformation. Energy calculations demonstrate that the helical handedness of tetramer stacks is governed by interlayer coordination, as the P-form Folate-Zn<sup>2+</sup> and the M-form Folate-Cu<sup>2+</sup> tetramer stacks exhibit lower energy than their counterparts, respectively. This mechanism can be generalized to other metal ions (Ca<sup>2+</sup>, Pb<sup>2+</sup>, Mn<sup>2+</sup>, and Cd<sup>2+</sup>), where the supramolecular chirality of Folate-M<sup>2+</sup> systems can be accurately predicted by DFT calculation. This work establishes a molecular-level picture for metal-ion-mediated chirality control, providing a predictive tool for rational design of chiral supramolecular materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"621–627"},"PeriodicalIF":8.7,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor Gas-Sensing Materials for Dissolved Gas Analysis in Transformer Oil: Advances, Challenges, and Future Perspectives in Material Design and Optimization 用于变压器油中溶解气体分析的半导体气敏材料:材料设计和优化的进展、挑战和未来展望
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-15 DOI: 10.1021/acsmaterialslett.5c01179
Qirui Wu, , , Peng Fan, , , Geming Wang, , , Chun Zhao, , , Houming Shen, , , Chendong Shao, , , Sheikh Tamjidur Rahman*, , and , Weixin Zhang*, 

This work reviews recent advances, key challenges, and future directions of semiconductor gas-sensing materials for dissolved gas analysis in transformer oil. It outlines the use of metal-oxide semiconductors, nanostructured materials such as two-dimensional materials and noble-metal-doped nanoparticles, and hybrid systems including MOF, MXene, and TMD for detecting critical fault gases such as hydrogen and acetylene, with emphasis on sensitivity, selectivity, and stability. It highlights progress achieved through surface modification, doping, defect engineering, micro-nano structural design, and plasma-based enhancement and considers the role of intelligent sensor systems and AI in material development and data interpretation. Despite improvements in low-concentration detection and response speed, issues remain in long-term stability, cross-sensitivity, and performance in complex oil environments. Future work should explore new material systems, establish unified testing standards, and integrate multidisciplinary approaches to enable efficient, intelligent transformer fault diagnosis. This review serves as a reference for designing semiconductor gas-sensing materials for power equipment monitoring.

本文综述了用于变压器油中溶解气体分析的半导体气敏材料的最新进展、主要挑战和未来发展方向。它概述了金属氧化物半导体,纳米结构材料(如二维材料和贵金属掺杂纳米颗粒)以及混合系统(包括MOF, MXene和TMD)用于检测关键故障气体(如氢气和乙炔)的使用,重点是灵敏度,选择性和稳定性。它强调了通过表面改性、掺杂、缺陷工程、微纳米结构设计和基于等离子体的增强所取得的进展,并考虑了智能传感器系统和人工智能在材料开发和数据解释中的作用。尽管低浓度检测和响应速度有所提高,但在复杂油环境中的长期稳定性、交叉灵敏度和性能方面仍然存在问题。未来的工作应该探索新的材料体系,建立统一的测试标准,并整合多学科方法,以实现高效、智能的变压器故障诊断。为电力设备监测用半导体气敏材料的设计提供参考。
{"title":"Semiconductor Gas-Sensing Materials for Dissolved Gas Analysis in Transformer Oil: Advances, Challenges, and Future Perspectives in Material Design and Optimization","authors":"Qirui Wu,&nbsp;, ,&nbsp;Peng Fan,&nbsp;, ,&nbsp;Geming Wang,&nbsp;, ,&nbsp;Chun Zhao,&nbsp;, ,&nbsp;Houming Shen,&nbsp;, ,&nbsp;Chendong Shao,&nbsp;, ,&nbsp;Sheikh Tamjidur Rahman*,&nbsp;, and ,&nbsp;Weixin Zhang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01179","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01179","url":null,"abstract":"<p >This work reviews recent advances, key challenges, and future directions of semiconductor gas-sensing materials for dissolved gas analysis in transformer oil. It outlines the use of metal-oxide semiconductors, nanostructured materials such as two-dimensional materials and noble-metal-doped nanoparticles, and hybrid systems including MOF, MXene, and TMD for detecting critical fault gases such as hydrogen and acetylene, with emphasis on sensitivity, selectivity, and stability. It highlights progress achieved through surface modification, doping, defect engineering, micro-nano structural design, and plasma-based enhancement and considers the role of intelligent sensor systems and AI in material development and data interpretation. Despite improvements in low-concentration detection and response speed, issues remain in long-term stability, cross-sensitivity, and performance in complex oil environments. Future work should explore new material systems, establish unified testing standards, and integrate multidisciplinary approaches to enable efficient, intelligent transformer fault diagnosis. This review serves as a reference for designing semiconductor gas-sensing materials for power equipment monitoring.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"371–399"},"PeriodicalIF":8.7,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical Phase Separation to Regulate the Structural Morphology of Organic Semiconductors and Its Applications 垂直相分离调节有机半导体结构形态及其应用
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-14 DOI: 10.1021/acsmaterialslett.5c01278
Longlong Jiang, , , Xiaocheng Wu, , , Fan Ni, , , Xiaohong Wang*, , and , Longzhen Qiu*, 

Organic semiconductors (OSCs) are expected to play an important role in next-generation electronics due to their solution processability, etc. However, conjugated polymer films processed in solution usually have the problems of low crystallinity and carriers are easily trapped by semiconductor/dielectric layer interface traps, while solution processed small molecule OSCs films have poor integrity, both of which will lead to the damage of electrical properties. The vertical phase separation (VPS) of blend films of OSCs and insulating polymers (IPs) can solve these problems, improve the solution processability of small molecule OSCs, enhance the crystallinity of conjugated polymers, reduce interface traps, and significantly improve the performance of organic field-effect transistor (OFET). This review highlights key factors influencing the structural morphology of OSC/IP blend VPS films, and summarizes their applications in OFETs. Finally, challenges and opportunities for the preparation of multifunctional OFETs from OSC/IP blends are summarized and discussed.

有机半导体(OSCs)由于其溶液可加工性等优点,有望在下一代电子产品中发挥重要作用。然而,在溶液中加工的共轭聚合物薄膜通常存在结晶度低和载流子容易被半导体/介电层界面陷阱捕获的问题,而溶液加工的小分子OSCs薄膜完整性差,这两者都会导致电性能的破坏。OSCs与绝缘聚合物(IPs)共混膜的垂直相分离(VPS)可以解决这些问题,提高小分子OSCs的溶液可加工性,增强共轭聚合物的结晶度,减少界面陷阱,显著提高有机场效应晶体管(OFET)的性能。本文综述了影响OSC/IP共混VPS薄膜结构形态的关键因素,并对其在ofet中的应用进行了综述。最后,总结和讨论了用盐酸盐/IP共混物制备多功能ofet的挑战和机遇。
{"title":"Vertical Phase Separation to Regulate the Structural Morphology of Organic Semiconductors and Its Applications","authors":"Longlong Jiang,&nbsp;, ,&nbsp;Xiaocheng Wu,&nbsp;, ,&nbsp;Fan Ni,&nbsp;, ,&nbsp;Xiaohong Wang*,&nbsp;, and ,&nbsp;Longzhen Qiu*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01278","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01278","url":null,"abstract":"<p >Organic semiconductors (OSCs) are expected to play an important role in next-generation electronics due to their solution processability, etc. However, conjugated polymer films processed in solution usually have the problems of low crystallinity and carriers are easily trapped by semiconductor/dielectric layer interface traps, while solution processed small molecule OSCs films have poor integrity, both of which will lead to the damage of electrical properties. The vertical phase separation (VPS) of blend films of OSCs and insulating polymers (IPs) can solve these problems, improve the solution processability of small molecule OSCs, enhance the crystallinity of conjugated polymers, reduce interface traps, and significantly improve the performance of organic field-effect transistor (OFET). This review highlights key factors influencing the structural morphology of OSC/IP blend VPS films, and summarizes their applications in OFETs. Finally, challenges and opportunities for the preparation of multifunctional OFETs from OSC/IP blends are summarized and discussed.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"400–418"},"PeriodicalIF":8.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Guest Encapsulated Metal–Organic Framework with Dual-Stimuli-Responsive Energy Transfer Process for High-Security Information Protection 具有双激励响应能量传递过程的高安全信息保护的双客体封装金属-有机框架
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-14 DOI: 10.1021/acsmaterialslett.5c01615
Lin Zhang, , , Xiaoman Zhang, , , Jiaojiao Yang, , , Yubing Luo, , , Dian Zhao*, , , Yabing He*, , and , Banglin Chen*, 

The development of dynamic luminescent materials that are responsive to multiple stimuli is crucial for information security, but challenges still existing in material design. Herein, we employ an anionic metal–organic framework (MOF), denoted ZJU-64, as a photochemical reaction vessel to assemble two guests, a static energy donor (thioflavin T, ThT) and a photochromic dynamic energy acceptor (merocyanine, MC). The host–guest MC@ZJU-64 and MC&ThT@ZJU-64 materials exhibit reversible powder/fluorescence color switching under alternating exposure to visible light (470 nm) and heat (60 °C). Crucially, the well-defined nanopores not only suppress aggregation but also enable fluorescence resonance energy transfer from ThT to MC. This process can be modulated by light-induced MC isomerization, leading to a wavelength shift of about 200 nm. A proof-of-concept Morse code encryption platform is then demonstrated, where hidden information on different levels can be selectively revealed. This work provides a strategic design for creating smart responsive materials with high-level security functions.

开发响应多种刺激的动态发光材料对信息安全至关重要,但材料设计仍然存在挑战。在此,我们采用阴离子金属有机框架(MOF),标记为ZJU-64,作为光化学反应容器来组装两个客体,一个静态能量供体(硫黄素T, ThT)和光致变色动态能量受体(merocyanine, MC)。主客体MC@ZJU-64和MC&;ThT@ZJU-64材料在可见光(470 nm)和高温(60°C)交替暴露下表现出可逆的粉末/荧光颜色切换。关键是,定义良好的纳米孔不仅抑制了聚集,而且使荧光共振能量从ThT转移到MC。这一过程可以通过光诱导MC异构化来调节,导致约200 nm的波长位移。然后演示了一个概念验证莫尔斯电码加密平台,其中可以选择性地显示不同级别的隐藏信息。这项工作为创建具有高级安全功能的智能响应材料提供了一种战略设计。
{"title":"Dual-Guest Encapsulated Metal–Organic Framework with Dual-Stimuli-Responsive Energy Transfer Process for High-Security Information Protection","authors":"Lin Zhang,&nbsp;, ,&nbsp;Xiaoman Zhang,&nbsp;, ,&nbsp;Jiaojiao Yang,&nbsp;, ,&nbsp;Yubing Luo,&nbsp;, ,&nbsp;Dian Zhao*,&nbsp;, ,&nbsp;Yabing He*,&nbsp;, and ,&nbsp;Banglin Chen*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01615","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01615","url":null,"abstract":"<p >The development of dynamic luminescent materials that are responsive to multiple stimuli is crucial for information security, but challenges still existing in material design. Herein, we employ an anionic metal–organic framework (MOF), denoted ZJU-64, as a photochemical reaction vessel to assemble two guests, a static energy donor (thioflavin T, ThT) and a photochromic dynamic energy acceptor (merocyanine, MC). The host–guest MC@ZJU-64 and MC&amp;ThT@ZJU-64 materials exhibit reversible powder/fluorescence color switching under alternating exposure to visible light (470 nm) and heat (60 °C). Crucially, the well-defined nanopores not only suppress aggregation but also enable fluorescence resonance energy transfer from ThT to MC. This process can be modulated by light-induced MC isomerization, leading to a wavelength shift of about 200 nm. A proof-of-concept Morse code encryption platform is then demonstrated, where hidden information on different levels can be selectively revealed. This work provides a strategic design for creating smart responsive materials with high-level security functions.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"651–659"},"PeriodicalIF":8.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionally Sulfur-Bridged Phenazine Polymer for Ultrarobust Aqueous Proton-Coupled Energy Storage 功能硫桥接苯那嗪聚合物用于超强水相质子耦合储能
IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-01-13 DOI: 10.1021/acsmaterialslett.5c01312
Zhiyu Wang, , , Manohar Salla, , , Jing Yang, , , Yanping Xu, , , Heng Wang, , , Dao Gen Lek, , , Xiran Qin, , and , Qing Wang*, 

Aqueous proton-coupled energy storage systems enable ultrafast charging and intrinsic safety in aqueous electrolytes, but the durable anodes operating at low potential (<0.3 V vs SHE) in acidic conditions are still challenging. This work introduces 1,6-poly(phenazine sulfide) (1,6-PPS), a functionally sulfur-bridged phenazine polymer anode designed to overcome key challenges. Its minimalist architecture enables exceptional stability in 1 M H2SO4, exhibiting near-zero capacity decay over 10,000 cycles. 1,6-PPS also delivers ultrafast kinetics, retaining 56% of theoretical capacity (141 mAh g–1) at 50 A g–1 due to extended π-conjugation and high proton diffusivity (5 × 10–7 to 10–9 cm2 s–1). The synthesis maximizes redox-active phenazine density, achieving a high specific capacity of 255 mAh g–1. In a full cell with a N,N′-(2,5-dichloro-1,4-phenylene)bis(butane-1-sulfonamide) cathode, 1,6-PPS demonstrates a stable 0.77 V output and 96.4% capacity retention over 500 cycles. This work establishes sulfur-bridged phenazine polymers as durable, high-performance anodes for next-generation proton batteries.

水质子耦合储能系统能够实现水电解质的超快充电和本质安全,但在酸性条件下在低电位(0.3 V vs SHE)下工作的耐用阳极仍然具有挑战性。这项工作介绍了1,6-聚(吩那嗪硫化)(1,6- pps),一种功能性硫桥接吩那嗪聚合物阳极,旨在克服关键挑战。其极简的结构使其在1m H2SO4中具有出色的稳定性,在10,000次循环中表现出接近零的容量衰减。1,6- pps还提供了超快的动力学,在50 A g-1下,由于扩展的π共轭和高质子扩散率(5 × 10-7至10-9 cm2 s-1),保持了56%的理论容量(141 mAh g-1)。该合成最大限度地提高了氧化还原活性的非那嗪密度,实现了255 mAh g-1的高比容量。在具有N,N ' -(2,5-二氯-1,4-苯基)双(丁烷-1-磺酰胺)阴极的满电池中,1,6- pps在500次循环中显示出稳定的0.77 V输出和96.4%的容量保持率。这项工作建立了硫桥接的非那嗪聚合物作为耐用的,高性能的下一代质子电池阳极。
{"title":"Functionally Sulfur-Bridged Phenazine Polymer for Ultrarobust Aqueous Proton-Coupled Energy Storage","authors":"Zhiyu Wang,&nbsp;, ,&nbsp;Manohar Salla,&nbsp;, ,&nbsp;Jing Yang,&nbsp;, ,&nbsp;Yanping Xu,&nbsp;, ,&nbsp;Heng Wang,&nbsp;, ,&nbsp;Dao Gen Lek,&nbsp;, ,&nbsp;Xiran Qin,&nbsp;, and ,&nbsp;Qing Wang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c01312","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.5c01312","url":null,"abstract":"<p >Aqueous proton-coupled energy storage systems enable ultrafast charging and intrinsic safety in aqueous electrolytes, but the durable anodes operating at low potential (&lt;0.3 V vs SHE) in acidic conditions are still challenging. This work introduces 1,6-poly(phenazine sulfide) (1,6-PPS), a functionally sulfur-bridged phenazine polymer anode designed to overcome key challenges. Its minimalist architecture enables exceptional stability in 1 M H<sub>2</sub>SO<sub>4</sub>, exhibiting near-zero capacity decay over 10,000 cycles. 1,6-PPS also delivers ultrafast kinetics, retaining 56% of theoretical capacity (141 mAh g<sup>–1</sup>) at 50 A g<sup>–1</sup> due to extended π-conjugation and high proton diffusivity (5 × 10<sup>–7</sup> to 10<sup>–9</sup> cm<sup>2</sup> s<sup>–1</sup>). The synthesis maximizes redox-active phenazine density, achieving a high specific capacity of 255 mAh g<sup>–1</sup>. In a full cell with a <i>N</i>,<i>N</i>′-(2,5-dichloro-1,4-phenylene)bis(butane-1-sulfonamide) cathode, 1,6-PPS demonstrates a stable 0.77 V output and 96.4% capacity retention over 500 cycles. This work establishes sulfur-bridged phenazine polymers as durable, high-performance anodes for next-generation proton batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"8 2","pages":"492–499"},"PeriodicalIF":8.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1