V. Vaishnavi, M. Braveen, N. Muthukumaran, P. Poonkodi
{"title":"Premature Infant Cry Classification via Elephant Herding Optimized Convolutional Gated Recurrent Neural Network","authors":"V. Vaishnavi, M. Braveen, N. Muthukumaran, P. Poonkodi","doi":"10.1007/s00034-024-02764-5","DOIUrl":null,"url":null,"abstract":"<p>Premature babies scream to make contact with their mothers or other people. Infants communicate via their screams in different ways based on the motivation behind their cries. A considerable amount of work and focus is required these days to preprocess, extract features, and classify audio signals. This research aims to propose a novel Elephant Herding Optimized Deep Convolutional Gated Recurrent Neural Network (EHO-DCGR net) for classifying cry signals from premature babies. Cry signals are first preprocessed to remove distortion caused by short sample times. MFCC (Mel-frequency cepstral coefficient), Power Normalized Cepstral Coefficients (PNCC), BFCC (Bark-frequency cepstral coefficient), and LPCC (Linear Prediction cepstral coefficient) are used to identify abnormal weeping through their prosodic aspects. The Elephant Herding optimization (EHO) algorithm is utilized for choosing the best features from the extracted set to form a fused feature matrix. These characteristics are then used to categorize premature baby cry sounds using the DCGR net. The proposed EHO-DCGR net effectiveness is measured by precision, specificity, recall, and F1-score, accuracy. According to experimental fallouts, the proposed EHO-DCGR net detects baby cry signals with an astounding 98.45% classification accuracy. From the experimental analysis, the EHO-DCGR Net increases the overall accuracy by 12.64%, 3.18%, 9.71% and 3.50% better than MFCC-SVM, DFFNN, SVM-RBF and SGDM respectively.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02764-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Premature babies scream to make contact with their mothers or other people. Infants communicate via their screams in different ways based on the motivation behind their cries. A considerable amount of work and focus is required these days to preprocess, extract features, and classify audio signals. This research aims to propose a novel Elephant Herding Optimized Deep Convolutional Gated Recurrent Neural Network (EHO-DCGR net) for classifying cry signals from premature babies. Cry signals are first preprocessed to remove distortion caused by short sample times. MFCC (Mel-frequency cepstral coefficient), Power Normalized Cepstral Coefficients (PNCC), BFCC (Bark-frequency cepstral coefficient), and LPCC (Linear Prediction cepstral coefficient) are used to identify abnormal weeping through their prosodic aspects. The Elephant Herding optimization (EHO) algorithm is utilized for choosing the best features from the extracted set to form a fused feature matrix. These characteristics are then used to categorize premature baby cry sounds using the DCGR net. The proposed EHO-DCGR net effectiveness is measured by precision, specificity, recall, and F1-score, accuracy. According to experimental fallouts, the proposed EHO-DCGR net detects baby cry signals with an astounding 98.45% classification accuracy. From the experimental analysis, the EHO-DCGR Net increases the overall accuracy by 12.64%, 3.18%, 9.71% and 3.50% better than MFCC-SVM, DFFNN, SVM-RBF and SGDM respectively.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.