Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Circuits, Systems and Signal Processing Pub Date : 2024-09-12 DOI:10.1007/s00034-024-02832-w
Hsin-Liang Chen, Hsiao-Hsing Chou, Hong-Ming Chiu, Hung-Chi Chang, Jen-Shiun Chiang
{"title":"Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique","authors":"Hsin-Liang Chen, Hsiao-Hsing Chou, Hong-Ming Chiu, Hung-Chi Chang, Jen-Shiun Chiang","doi":"10.1007/s00034-024-02832-w","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a delta-sigma modulator (DSM) for audio band applications with low-area cost and high-resolution performance characteristics. The proposed circuit is implemented by discrete-time switched capacitor circuits. It employs an assisted 6-bit successive approximation register (SAR) analog-to-digital converter (ADC) as the quantizer. Most importantly, it combines and shares the resistive digital-to-analog (DAC) in DSM and SAR ADC. Therefore, it can achieve high-efficiency advantages and reduce the chip layout cost. After all, the chip area is only 0.096 mm<sup>2</sup> by the 0.18 um 1P6M CMOS process. It achieves 96 dB dynamic range (DR), 83.1 dB signal to noise and distortion ratio (SNDR), and 93.4 dB signal to noise ratio (SNR) with 25 kHz signal bandwidth and oversampling ratio (OSR) of 64.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02832-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a delta-sigma modulator (DSM) for audio band applications with low-area cost and high-resolution performance characteristics. The proposed circuit is implemented by discrete-time switched capacitor circuits. It employs an assisted 6-bit successive approximation register (SAR) analog-to-digital converter (ADC) as the quantizer. Most importantly, it combines and shares the resistive digital-to-analog (DAC) in DSM and SAR ADC. Therefore, it can achieve high-efficiency advantages and reduce the chip layout cost. After all, the chip area is only 0.096 mm2 by the 0.18 um 1P6M CMOS process. It achieves 96 dB dynamic range (DR), 83.1 dB signal to noise and distortion ratio (SNDR), and 93.4 dB signal to noise ratio (SNR) with 25 kHz signal bandwidth and oversampling ratio (OSR) of 64.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用连续逼近寄存器 ADC 辅助模拟反馈技术的离散时间三角积分调制器
本文提出了一种用于音频波段应用的三角积分调制器(DSM),具有低成本、高分辨率的性能特点。该电路由离散时间开关电容电路实现。它采用辅助 6 位逐次逼近寄存器(SAR)模数转换器(ADC)作为量化器。最重要的是,它结合并共享了 DSM 和 SAR ADC 中的电阻式数模转换器 (DAC)。因此,它可以实现高效率优势并降低芯片布局成本。毕竟,采用 0.18 um 1P6M CMOS 工艺,芯片面积仅为 0.096 mm2。在 25 kHz 信号带宽和 64 的过采样率(OSR)条件下,它的动态范围(DR)达到 96 dB,信噪比和失真比(SNDR)达到 83.1 dB,信噪比(SNR)达到 93.4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
期刊最新文献
Squeeze-and-Excitation Self-Attention Mechanism Enhanced Digital Audio Source Recognition Based on Transfer Learning Recursive Windowed Variational Mode Decomposition Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification Event-Triggered $$H_{\infty }$$ Filtering for A Class of Nonlinear Systems Under DoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1