Thermoplastic Chitosan Plasticized with Deep Eutectic Solvent Derived from Gamma-valerolactone

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL Journal of Polymers and the Environment Pub Date : 2024-07-05 DOI:10.1007/s10924-024-03305-6
Ana Clara Lancarovici Alves, Camila Souza Santos, Antonio Carlos Bender Burtoloso, Antonio José Felix Carvalho
{"title":"Thermoplastic Chitosan Plasticized with Deep Eutectic Solvent Derived from Gamma-valerolactone","authors":"Ana Clara Lancarovici Alves,&nbsp;Camila Souza Santos,&nbsp;Antonio Carlos Bender Burtoloso,&nbsp;Antonio José Felix Carvalho","doi":"10.1007/s10924-024-03305-6","DOIUrl":null,"url":null,"abstract":"<div><p>A new polyol derived from gamma-valerolactone with 10 carbon chain and four hydroxyl groups was used in combination with choline chloride for the production of a deep eutectic solvent (DES) employed as plasticizer for chitosan. The polyol estimated boiling point was 340 °C and the glass transition temperature (T<sub>g</sub>) was − 6 °C. No crystallization temperature was observed due to the non-symmetric structure of polyol and because it is a mixture of stereoisomers. A eutectic condition was detected in an interval of choline chloride(ChCl)/polyol composition from 2:1 to 1:10. It was observed that only the mixtures with higher ChCl content showed melting points, so the eutectic composition was chosen by the lowest T<sub>g</sub> that was obtained by the 1:1 molar ratio mixture, circa − 40 °C. This ChCl/Polyol composition was used to prepare plasticized chitosan film, by hot pressing. The glycerol/choline chloride mixture was also used as DES for comparison purposes. Both DES acted as plasticizer to obtain chitosan thermoplastic films, verified by the significant T<sub>g</sub> drop from 165 °C, for unplasticized film, to -2 °C and − 30 °C, for films plasticized with DES based on ChCl-polyol and ChCl-glycerol, respectively. The materials plasticized with ChCl-polyol, showed a decrease in modulus of about 54% and an increase of 455% in elongation compared to ChCl/Glycerol, indicating better plasticization efficiency of the polyol based DES. The use of ChCl/Polyol have opened up a new opportunity for the use of chitosan as a plastic material and the high boiling point of polyol has made it a real and highly stable plasticizer.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 11","pages":"5902 - 5914"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03305-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A new polyol derived from gamma-valerolactone with 10 carbon chain and four hydroxyl groups was used in combination with choline chloride for the production of a deep eutectic solvent (DES) employed as plasticizer for chitosan. The polyol estimated boiling point was 340 °C and the glass transition temperature (Tg) was − 6 °C. No crystallization temperature was observed due to the non-symmetric structure of polyol and because it is a mixture of stereoisomers. A eutectic condition was detected in an interval of choline chloride(ChCl)/polyol composition from 2:1 to 1:10. It was observed that only the mixtures with higher ChCl content showed melting points, so the eutectic composition was chosen by the lowest Tg that was obtained by the 1:1 molar ratio mixture, circa − 40 °C. This ChCl/Polyol composition was used to prepare plasticized chitosan film, by hot pressing. The glycerol/choline chloride mixture was also used as DES for comparison purposes. Both DES acted as plasticizer to obtain chitosan thermoplastic films, verified by the significant Tg drop from 165 °C, for unplasticized film, to -2 °C and − 30 °C, for films plasticized with DES based on ChCl-polyol and ChCl-glycerol, respectively. The materials plasticized with ChCl-polyol, showed a decrease in modulus of about 54% and an increase of 455% in elongation compared to ChCl/Glycerol, indicating better plasticization efficiency of the polyol based DES. The use of ChCl/Polyol have opened up a new opportunity for the use of chitosan as a plastic material and the high boiling point of polyol has made it a real and highly stable plasticizer.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用γ-戊内酯衍生的深共晶溶剂塑化的热塑性壳聚糖
一种新型多元醇来自γ-戊内酯,具有 10 个碳链和 4 个羟基,它与氯化胆碱一起用于生产一种深共晶溶剂(DES),用作壳聚糖的增塑剂。多元醇的估计沸点为 340 ℃,玻璃转化温度(Tg)为 - 6 ℃。由于多元醇的结构不对称,而且是立体异构体的混合物,因此没有观察到结晶温度。在氯化胆碱(ChCl)/多元醇的比例为 2:1 至 1:10 的范围内,检测到了共晶状态。据观察,只有氯化胆碱含量较高的混合物才显示出熔点,因此共晶成分是根据摩尔比为 1:1 的混合物所获得的最低 Tg(约 - 40 °C)来选择的。这种氯化胆碱/多元醇组合物被用来通过热压制备塑化壳聚糖薄膜。甘油/氯化胆碱混合物也被用作 DES 进行比较。这两种 DES 都是获得壳聚糖热塑性薄膜的增塑剂,未增塑薄膜的 Tg 从 165 ℃ 显著下降到 -2 ℃,而使用基于 ChCl-多元醇和 ChCl-甘油的 DES 增塑薄膜的 Tg 则分别下降到 -30 ℃。与 ChCl/甘油相比,使用 ChCl-多元醇塑化的材料模量降低了约 54%,伸长率增加了 455%,这表明多元醇基 DES 的塑化效率更高。氯化胆/多元醇的使用为壳聚糖作为塑料材料提供了新的机遇,而多元醇的高沸点使其成为一种真正的、高度稳定的增塑剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
期刊最新文献
Structural Characterization of Microcapsules from Common Bee Pollen for the Development of Delivery Systems Synthesis and Characterization of Self-Healing Polymers Obtained from Polyphenols and Cyclic Carbonates of Amide Derivative of Macaw Palm Oil Synthesis and Characterization of Chitosan-Based Hydrogels Grafted Polyimidazolium as Nitrate Ion Adsorbent from Water and Investigating Biological Properties Recycle of Flexible Polyurethane Foam by Acidolysis and Reuse of Recovered Polyol Nanocomposites Prepared in Supercritical Carbon Dioxide from Epoxidized Soybean Oil, Citric Acid, and Cellulose Nanofibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1