Francesco Gagliardi;Alessandro Catania;Massimo Piotto;Paolo Bruschi;Michele Dei
{"title":"Parallel Slew-Rate Enhancer With Current-Recycling Core for Switched-Capacitors Circuits","authors":"Francesco Gagliardi;Alessandro Catania;Massimo Piotto;Paolo Bruschi;Michele Dei","doi":"10.1109/TCSII.2024.3423313","DOIUrl":null,"url":null,"abstract":"Enhancing the slew-rate and settling speed of amplifiers in switched-capacitor circuits without incurring in static power penalties has long been a focal point. Standardized solutions remain elusive due to significant design challenges, particularly when confronted with capacitive loads close to the range of internal parasitic capacitances. Herein, we present a novel parallel-type slew-rate enhancer based on a current-recycling core, along with insights regarding settling time optimization under power constraints. We designed a switched-capacitor integrator based on a recycling folded cascode OTA, assisted by the proposed slew-rate enhancer, in a 180-nm 1.8-V CMOS technology. The circuit is operated with an equivalent capacitive load of approximately 8 pF and an input differential voltage step as large as 3.6 V. The system is required to settle in less than 40 ns, with a relative error on the final value below 0.1%. Simulation results show that, within the power budget of \n<inline-formula> <tex-math>$540~\\mu $ </tex-math></inline-formula>\nW, the proposed solution achieves a \n<inline-formula> <tex-math>$\\times 3.5$ </tex-math></inline-formula>\n improvement in settling time compared to the OTA alone and a \n<inline-formula> <tex-math>$\\times 2.1$ </tex-math></inline-formula>\n improvement compared to the OTA assisted by a standard parallel slew-rate enhancer.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"4814-4818"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585330","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10585330/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the slew-rate and settling speed of amplifiers in switched-capacitor circuits without incurring in static power penalties has long been a focal point. Standardized solutions remain elusive due to significant design challenges, particularly when confronted with capacitive loads close to the range of internal parasitic capacitances. Herein, we present a novel parallel-type slew-rate enhancer based on a current-recycling core, along with insights regarding settling time optimization under power constraints. We designed a switched-capacitor integrator based on a recycling folded cascode OTA, assisted by the proposed slew-rate enhancer, in a 180-nm 1.8-V CMOS technology. The circuit is operated with an equivalent capacitive load of approximately 8 pF and an input differential voltage step as large as 3.6 V. The system is required to settle in less than 40 ns, with a relative error on the final value below 0.1%. Simulation results show that, within the power budget of
$540~\mu $
W, the proposed solution achieves a
$\times 3.5$
improvement in settling time compared to the OTA alone and a
$\times 2.1$
improvement compared to the OTA assisted by a standard parallel slew-rate enhancer.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.