首页 > 最新文献

IEEE Transactions on Circuits and Systems II: Express Briefs最新文献

英文 中文
IEEE Circuits and Systems Society Information IEEE电路与系统学会信息
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-06 DOI: 10.1109/TCSII.2025.3641493
{"title":"IEEE Circuits and Systems Society Information","authors":"","doi":"10.1109/TCSII.2025.3641493","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3641493","url":null,"abstract":"","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"C3-C3"},"PeriodicalIF":4.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11330180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information IEEE电路与系统汇刊——II:快报简报出版信息
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-06 DOI: 10.1109/TCSII.2025.3641491
{"title":"IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information","authors":"","doi":"10.1109/TCSII.2025.3641491","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3641491","url":null,"abstract":"","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"C2-C2"},"PeriodicalIF":4.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11330183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incoming Editorial 传入的编辑
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-06 DOI: 10.1109/TCSII.2025.3633439
Edoardo Bonizzoni
{"title":"Incoming Editorial","authors":"Edoardo Bonizzoni","doi":"10.1109/TCSII.2025.3633439","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3633439","url":null,"abstract":"","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"1-2"},"PeriodicalIF":4.9,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11330184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2025 Index IEEE Transactions on Circuits and Systems--II IEEE电路与系统学报(ⅱ
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-04 DOI: 10.1109/TCSII.2025.3640485
{"title":"2025 Index IEEE Transactions on Circuits and Systems--II","authors":"","doi":"10.1109/TCSII.2025.3640485","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3640485","url":null,"abstract":"","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 12","pages":"1-102"},"PeriodicalIF":4.9,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11278479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145674664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Compact Wideband SPDT Switch With High Isolation for Sub-6 GHz Applications 用于Sub-6 GHz应用的高隔离紧凑型宽带SPDT开关设计
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-01 DOI: 10.1109/TCSII.2025.3638907
Nengxu Zhu;Yiting Zhang;Zenglong Zhao;Fanyi Meng
This brief presents a compact DC-to-6 GHz single-pole double-throw (SPDT) switch utilizing embedded RLC resonator technology. Building upon the traditional series-shunt RCstructure, an inductor is incorporated between the series and shunt transistors, working in conjunction with the port-matching inductors to achieve broadband low-loss characteristics in the through mode. In the isolation mode, the structure forms an RLC resonator to enhance isolation. To improve linearity, quadruple-stacked transistors are employed for both the series and shunt-switching transistors. Fabricated using the SMIC $0.13~mu $ m CMOS SOI process, the measurement results demonstrate that the chip achieves an isolation of >50 dB across the DC-to-6 GHz range, with an insertion loss of only 0.4–1.2 dB and an input power at 1 dB compression point (IP1dB) of 20 dBm at 5 GHz. The core area of the chip is only 0.06 mm2.
本简报介绍了一种采用嵌入式RLC谐振器技术的紧凑dc - 6ghz单极双掷(SPDT)开关。在传统串联-并联结构的基础上,在串联和并联晶体管之间加入电感器,与端口匹配电感器一起工作,以实现通过模式下的宽带低损耗特性。在隔离模式下,该结构形成RLC谐振腔以增强隔离。为了提高线性度,串联和并联开关晶体管都采用了四层堆叠晶体管。该芯片采用中芯国际0.13~ μ m CMOS SOI工艺制作,测量结果表明,该芯片在dc至6 GHz范围内实现了>50 dB的隔离,插入损耗仅为0.4-1.2 dB,在5 GHz时1dB压缩点(IP1dB)的输入功率为20 dBm。芯片的核心面积仅为0.06 mm2。
{"title":"Design of a Compact Wideband SPDT Switch With High Isolation for Sub-6 GHz Applications","authors":"Nengxu Zhu;Yiting Zhang;Zenglong Zhao;Fanyi Meng","doi":"10.1109/TCSII.2025.3638907","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3638907","url":null,"abstract":"This brief presents a compact DC-to-6 GHz single-pole double-throw (SPDT) switch utilizing embedded <italic>RLC</i> resonator technology. Building upon the traditional series-shunt <italic>RC</i>structure, an inductor is incorporated between the series and shunt transistors, working in conjunction with the port-matching inductors to achieve broadband low-loss characteristics in the through mode. In the isolation mode, the structure forms an <italic>RLC</i> resonator to enhance isolation. To improve linearity, quadruple-stacked transistors are employed for both the series and shunt-switching transistors. Fabricated using the SMIC <inline-formula> <tex-math>$0.13~mu $ </tex-math></inline-formula>m CMOS SOI process, the measurement results demonstrate that the chip achieves an isolation of >50 dB across the DC-to-6 GHz range, with an insertion loss of only 0.4–1.2 dB and an input power at 1 dB compression point (IP<sub>1dB</sub>) of 20 dBm at 5 GHz. The core area of the chip is only 0.06 mm<sup>2</sup>.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"43-47"},"PeriodicalIF":4.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DC-to-30 GHz NMOS Attenuator With Constant MOSFET On-Resistance 具有恒定MOSFET导通电阻的直流至30 GHz NMOS衰减器
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-26 DOI: 10.1109/TCSII.2025.3637298
Gaoyuan Zhao;Xiangyu Meng;Pengfei Bai;Baoyong Chi
This brief presents a 5-bit CMOS attenuator employing an NMOS on-resistance self-locking technique to address temperature drift and process variations in millimeter-wave phased arrays. Unlike conventional polysilicon resistor networks, the proposed design features an all-NMOS attenuation network operating in the deep linear region, leveraging transistor parasitic capacitance for intrinsic phase compensation. A closed-loop feedback mechanism dynamically stabilizes on-resistance by real-time gate bias adjustment, eliminating external tuning while suppressing PVT variations across DC–30 GHz. Measurement results demonstrate 0.46 dB RMS amplitude error and 1.77° RMS phase error, with cross-chip comparisons revealing process variation tolerance: inter-chip discrepancies remain below 0.06 dB (gain) and 1.36° (phase). The self-locking loop achieves fully automatic impedance stabilization with $868~mu $ W power consumption and 0.0148 mm2 core area in 65 nm CMOS.
本文介绍了一种采用NMOS导通电阻自锁技术的5位CMOS衰减器,以解决毫米波相控阵中的温度漂移和工艺变化问题。与传统的多晶硅电阻网络不同,所提出的设计具有在深线性区域工作的全nmos衰减网络,利用晶体管寄生电容进行固有相位补偿。闭环反馈机制通过实时栅极偏置调整动态稳定导通电阻,消除外部调谐,同时抑制dc - 30ghz范围内的PVT变化。测量结果显示0.46 dB的RMS振幅误差和1.77°的RMS相位误差,通过跨芯片的比较揭示了工艺变化的容错:芯片间的差异保持在0.06 dB(增益)和1.36°(相位)以下。自锁环实现全自动阻抗稳定,功耗为868~mu $ W,核心面积为0.0148 mm2,采用65nm CMOS。
{"title":"A DC-to-30 GHz NMOS Attenuator With Constant MOSFET On-Resistance","authors":"Gaoyuan Zhao;Xiangyu Meng;Pengfei Bai;Baoyong Chi","doi":"10.1109/TCSII.2025.3637298","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3637298","url":null,"abstract":"This brief presents a 5-bit CMOS attenuator employing an NMOS on-resistance self-locking technique to address temperature drift and process variations in millimeter-wave phased arrays. Unlike conventional polysilicon resistor networks, the proposed design features an all-NMOS attenuation network operating in the deep linear region, leveraging transistor parasitic capacitance for intrinsic phase compensation. A closed-loop feedback mechanism dynamically stabilizes on-resistance by real-time gate bias adjustment, eliminating external tuning while suppressing PVT variations across DC–30 GHz. Measurement results demonstrate 0.46 dB RMS amplitude error and 1.77° RMS phase error, with cross-chip comparisons revealing process variation tolerance: inter-chip discrepancies remain below 0.06 dB (gain) and 1.36° (phase). The self-locking loop achieves fully automatic impedance stabilization with <inline-formula> <tex-math>$868~mu $ </tex-math></inline-formula>W power consumption and 0.0148 mm<sup>2</sup> core area in 65 nm CMOS.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"33-37"},"PeriodicalIF":4.9,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 25-Mb/s 4-ASK Receiver Front-End in 65-nm CMOS for Biomedical Data Telemetry via a Capacitive Link 25mb /s 4-ASK接收器前端65nm CMOS通过电容链路进行生物医学数据遥测
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-26 DOI: 10.1109/TCSII.2025.3637697
Hossein Yaghobi;Mohammad Mobaraki;Pedram Mohseni;Hossein Miri Lavasani
This brief presents a 25-Mbps 4-amplitude-shift-keying (4-ASK) receiver front-end (RFE) for biomedical data telemetry via a series-resonant capacitive link. The RFE incorporates low-power clock and data recovery (CDR) circuitry for synchronization in which a novel highly linear transconductance ( $G_{mathbf {m}}$ ) cell is employed in the phase detector (PD) to mitigate any possible error decisions while comparing the phase difference between the input and feedback signals. The proposed RFE is fabricated in 65 nm 1P8M standard CMOS, the core circuit occupies 0.11 mm ${}^{mathbf {2}}$ , and consumes 2.9 mA from 1 V. While conducting $ex ~vivo$ measurements using beef tissue and a series-resonant capacitive link, the proposed RFE is capable of processing 4-ASK data patterns up to 25 Mbps with bit error rate (BER) less than $10^{mathbf {-3}}$ and total jitter of ~42 ns.
本文介绍了一种通过串联谐振电容链路用于生物医学数据遥测的25mbps 4-幅度移位键控(4-ASK)接收器前端(RFE)。RFE集成了用于同步的低功耗时钟和数据恢复(CDR)电路,其中相位检测器(PD)中采用了新型高线性跨导($G_{mathbf {m}}$)单元,以在比较输入和反馈信号之间的相位差时减轻任何可能的错误决策。所提出的RFE采用65 nm 1P8M标准CMOS制作,核心电路占地0.11 mm ${}^{mathbf {2}}$, 1 V功耗2.9 mA。在使用牛肉组织和串联谐振电容链路进行离体测量时,所提出的RFE能够处理高达25 Mbps的4-ASK数据模式,误码率(BER)小于$10^{mathbf{-3}}$,总抖动为~42 ns。
{"title":"A 25-Mb/s 4-ASK Receiver Front-End in 65-nm CMOS for Biomedical Data Telemetry via a Capacitive Link","authors":"Hossein Yaghobi;Mohammad Mobaraki;Pedram Mohseni;Hossein Miri Lavasani","doi":"10.1109/TCSII.2025.3637697","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3637697","url":null,"abstract":"This brief presents a 25-Mbps 4-amplitude-shift-keying (4-ASK) receiver front-end (RFE) for biomedical data telemetry via a series-resonant capacitive link. The RFE incorporates low-power clock and data recovery (CDR) circuitry for synchronization in which a novel highly linear transconductance (<inline-formula> <tex-math>$G_{mathbf {m}}$ </tex-math></inline-formula>) cell is employed in the phase detector (PD) to mitigate any possible error decisions while comparing the phase difference between the input and feedback signals. The proposed RFE is fabricated in 65 nm 1P8M standard CMOS, the core circuit occupies 0.11 mm<inline-formula> <tex-math>${}^{mathbf {2}}$ </tex-math></inline-formula>, and consumes 2.9 mA from 1 V. While conducting <inline-formula> <tex-math>$ex ~vivo$ </tex-math></inline-formula> measurements using beef tissue and a series-resonant capacitive link, the proposed RFE is capable of processing 4-ASK data patterns up to 25 Mbps with bit error rate (BER) less than <inline-formula> <tex-math>$10^{mathbf {-3}}$ </tex-math></inline-formula> and total jitter of ~42 ns.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"38-42"},"PeriodicalIF":4.9,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Circuits and Systems Society Information IEEE电路与系统学会信息
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-25 DOI: 10.1109/TCSII.2025.3632713
{"title":"IEEE Circuits and Systems Society Information","authors":"","doi":"10.1109/TCSII.2025.3632713","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3632713","url":null,"abstract":"","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 12","pages":"C3-C3"},"PeriodicalIF":4.9,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11268902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 7-bit 76–81-GHz Hybrid Vector-Modulated Variable Gain Phase Shifter Combining Phase-Invariant VGA and 1-bit CDAC 结合相位不变VGA和1位CDAC的7位混合矢量调制变增益移相器
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-21 DOI: 10.1109/TCSII.2025.3635634
Bowen Ding;Ying Song;Lihua Dai;Shuiyang Lin
This article presents a 7-bit high-resolution hybrid vector-modulated (VM) variable gain phase shifter (VGPS) with 1-bit Capacitive Digital-to-Analog Converter (CDAC) in CMOS. Cross-coupled differential common-source pairs are used to form 11-step phase-invariant (PI) variable gain amplifiers (VGAs), ensuring consistent phase and suitable output impedance across varying gain and phase settings. To further improve phase resolution, a 1-bit CDAC is inserted between the coupler-based in-phase and quadrature generator (IQG) and the PI VGA. This integration mitigates typical CDAC drawbacks, such as variations in input/output return loss and sensitivity to VGA load impedance, without introducing phase or gain imbalances in the IQ paths. Measurements show that the proposed VGPS provides a 6 dB gain tuning range and monotonic phase response. It achieves 7-bit phase resolution over 70-85 GHz, with a root-mean-square (RMS) phase error less than 3° and RMS gain error of 0.5 dB. The circuit consumes 30 mW from a 0.9 V supply and occupies a compact core area of $425~mu $ m $times 320~mu $ m.
本文介绍了一种7位高分辨率混合矢量调制(VM)可变增益移相器(VGPS),该移相器具有1位电容式数模转换器(CDAC)。交叉耦合差分共源对用于形成11步相位不变(PI)变增益放大器(VGAs),确保在不同增益和相位设置下相位一致和合适的输出阻抗。为了进一步提高相位分辨率,在基于耦合器的同相和正交发生器(IQG)和PI VGA之间插入1位CDAC。这种集成减轻了典型的CDAC缺点,例如输入/输出返回损耗的变化和对VGA负载阻抗的灵敏度,而不会在IQ路径中引入相位或增益不平衡。测量结果表明,所提出的VGPS具有6 dB增益调谐范围和单调相位响应。在70-85 GHz范围内实现7位相位分辨率,均方根(RMS)相位误差小于3°,RMS增益误差为0.5 dB。该电路从0.9 V的电源消耗30 mW,并占用紧凑的核心面积$425~mu $ m $ × 320~mu $ m $ m。
{"title":"A 7-bit 76–81-GHz Hybrid Vector-Modulated Variable Gain Phase Shifter Combining Phase-Invariant VGA and 1-bit CDAC","authors":"Bowen Ding;Ying Song;Lihua Dai;Shuiyang Lin","doi":"10.1109/TCSII.2025.3635634","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3635634","url":null,"abstract":"This article presents a 7-bit high-resolution hybrid vector-modulated (VM) variable gain phase shifter (VGPS) with 1-bit Capacitive Digital-to-Analog Converter (CDAC) in CMOS. Cross-coupled differential common-source pairs are used to form 11-step phase-invariant (PI) variable gain amplifiers (VGAs), ensuring consistent phase and suitable output impedance across varying gain and phase settings. To further improve phase resolution, a 1-bit CDAC is inserted between the coupler-based in-phase and quadrature generator (IQG) and the PI VGA. This integration mitigates typical CDAC drawbacks, such as variations in input/output return loss and sensitivity to VGA load impedance, without introducing phase or gain imbalances in the IQ paths. Measurements show that the proposed VGPS provides a 6 dB gain tuning range and monotonic phase response. It achieves 7-bit phase resolution over 70-85 GHz, with a root-mean-square (RMS) phase error less than 3° and RMS gain error of 0.5 dB. The circuit consumes 30 mW from a 0.9 V supply and occupies a compact core area of <inline-formula> <tex-math>$425~mu $ </tex-math></inline-formula>m <inline-formula> <tex-math>$times 320~mu $ </tex-math></inline-formula>m.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"28-32"},"PeriodicalIF":4.9,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 109-dB SFDR Continuous-Time Delta-Sigma Modulator for Audio Using Bi-Directional Advancing Data Weighted Averaging 基于双向推进数据加权平均的109 db SFDR音频连续时间Delta-Sigma调制器
IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-20 DOI: 10.1109/TCSII.2025.3635133
Aoyun Sun;Lingling Wei;Hong Yang;Gang Liu;Zhang Zhang
This brief presents a high-linearity third-order 3-bit continuous-time delta-sigma modulator (CTDSM) with 109 dB spurious-free dynamic range (SFDR) for audio applications. The proposed modulator employs a cascade of integrators with feedforward structure using active RC integrators, a 3-bit flash quantizer, and resistor digital-to-analog converter (DAC) feedback. To address both DAC non-linearity and the tonal issues caused by conventional data weighted averaging (DWA), a new bi-directional advancing DWA (Bi-ADWA) with tone-suppressing and tone-transferring capabilities is introduced. Furthermore, the asymmetry in the rise/fall time of the DAC due to the additional paths introduced by Bi-ADWA is mitigated by optimizing the switch control circuitry and layout of the feedback DAC. Fabricated in a 180 nm CMOS technology, the modulator demonstrates a peak SNDR of 95.8 dB alongside a DR of 102.5 dB, consuming 0.58 mW at 1.8 V within an active area of 0.8 mm2.
本文介绍了一种用于音频应用的高线性三阶3位连续时间δ - σ调制器(CTDSM),具有109 dB无杂散动态范围(SFDR)。所提出的调制器采用具有前馈结构的级联积分器,使用有源RC积分器,3位闪光量化器和电阻数模转换器(DAC)反馈。为了解决DAC非线性和传统数据加权平均(DWA)引起的音调问题,介绍了一种具有音调抑制和音调转移功能的新型双向推进DWA (Bi-ADWA)。此外,由于Bi-ADWA引入的额外路径导致的DAC上升/下降时间的不对称性可以通过优化开关控制电路和反馈DAC的布局来缓解。该调制器采用180nm CMOS技术制造,峰值SNDR为95.8 dB, DR为102.5 dB,在1.8 V电压下,在0.8 mm2的有效面积内消耗0.58 mW。
{"title":"A 109-dB SFDR Continuous-Time Delta-Sigma Modulator for Audio Using Bi-Directional Advancing Data Weighted Averaging","authors":"Aoyun Sun;Lingling Wei;Hong Yang;Gang Liu;Zhang Zhang","doi":"10.1109/TCSII.2025.3635133","DOIUrl":"https://doi.org/10.1109/TCSII.2025.3635133","url":null,"abstract":"This brief presents a high-linearity third-order 3-bit continuous-time delta-sigma modulator (CTDSM) with 109 dB spurious-free dynamic range (SFDR) for audio applications. The proposed modulator employs a cascade of integrators with feedforward structure using active RC integrators, a 3-bit flash quantizer, and resistor digital-to-analog converter (DAC) feedback. To address both DAC non-linearity and the tonal issues caused by conventional data weighted averaging (DWA), a new bi-directional advancing DWA (Bi-ADWA) with tone-suppressing and tone-transferring capabilities is introduced. Furthermore, the asymmetry in the rise/fall time of the DAC due to the additional paths introduced by Bi-ADWA is mitigated by optimizing the switch control circuitry and layout of the feedback DAC. Fabricated in a 180 nm CMOS technology, the modulator demonstrates a peak SNDR of 95.8 dB alongside a <italic>DR</i> of 102.5 dB, consuming 0.58 mW at 1.8 V within an active area of 0.8 mm<sup>2</sup>.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"73 1","pages":"23-27"},"PeriodicalIF":4.9,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145904328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1