{"title":"Magnetic Mesoporous Silica Nanocomposite Supported Ionic Liquid/Cu as a Powerful and Highly Stable Catalyst for Chan-Lam Coupling Reaction","authors":"Shiva Kargar, Dawood Elhamifar","doi":"10.1007/s12633-024-03082-w","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, a novel magnetic mesoporous silica nanocomposite with a core–shell structure modified with IL/Cu complex (MMS@IL/Cu) is prepared through the template-directed hydrolysis of tetramethyl orthosilicate (TMOS) over Fe<sub>3</sub>O<sub>4</sub>@RF composite followed by grafting of propyl-imidazolium chloride/copper complex. The MMS@IL/Cu nanocomposite was characterized by PXRD, FT-IR, TGA, VSM, EDX, SEM and TEM techniques. The MMS@IL/Cu was employed as a robust nanocatalyst to successfully promote the Chan-Lam coupling reaction in EtOH at 50 °C. High yields of the desired products were obtained within a relatively short time. The designed magnetic catalyst could retain its high efficiency for at least eight runs under applied conditions.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 13-14","pages":"5285 - 5299"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03082-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a novel magnetic mesoporous silica nanocomposite with a core–shell structure modified with IL/Cu complex (MMS@IL/Cu) is prepared through the template-directed hydrolysis of tetramethyl orthosilicate (TMOS) over Fe3O4@RF composite followed by grafting of propyl-imidazolium chloride/copper complex. The MMS@IL/Cu nanocomposite was characterized by PXRD, FT-IR, TGA, VSM, EDX, SEM and TEM techniques. The MMS@IL/Cu was employed as a robust nanocatalyst to successfully promote the Chan-Lam coupling reaction in EtOH at 50 °C. High yields of the desired products were obtained within a relatively short time. The designed magnetic catalyst could retain its high efficiency for at least eight runs under applied conditions.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.