Pub Date : 2024-09-19DOI: 10.1007/s12633-024-03139-w
Rajni Bala, Sujata Sanghi, Ashish Agarwal, Saroj Rani, Sanjay Gaur
Bismuth-modified lead silicate glasses with composition 20PbO∙(80-x)Bi2O3∙xSiO2 (10 ≤ x ≤ 40 mol%) were fabricated by classical melt-quench technique. The density (D), crystalline volume (VC), and molar volume (VM) values decrease with a decrease in bismuth concentration. FTIR spectra suggest the formation of [BiO3], [BiO6], [SiO4], [PbO3], and [PbO4] structural units. The optical band gap (Eg) values for the studied glass composition are determined to be between 1.93 and 2.12 eV, while their Urbach energy (∆E) values fall between 0.14 and 0.24 eV. A decrease in values of average electronic oxide polarizability (2.84‒1.62 Å3), and optical basicity (1.08‒0.64), predict the increase in the covalence nature of the Bi-O bond with the incorporation of SiO2 in the glass network. The small metallization criterion (0.311 to 0.325) predicts the suitability of the prepared series to be utilized as nonlinear optical materials. The Z-scan approach was utilized to determine the third-order nonlinear optical characteristics, including the nonlinear absorption coefficient (α2), nonlinear susceptibility (χ(3)), and nonlinear refractive index (η2). Optical studies reveal that with the decrease in Bi2O3 content, nonbridging oxygens (NBOs) decrease leads to an increase in bandgap and a drop in the nonlinear refractive index. The dynamic range (DR) and limiting threshold values have also been reported from the optical limiting studies of the prepared glasses.
采用经典的熔融-淬火技术制备了铋改性硅酸铅玻璃,其成分为 20PbO∙(80-x)Bi2O3∙xSiO2 (10 ≤ x ≤ 40 mol%)。密度(D)、结晶体积(VC)和摩尔体积(VM)值随铋浓度的降低而降低。傅立叶变换红外光谱表明形成了[BiO3]、[BiO6]、[SiO4]、[PbO3]和[PbO4]结构单元。所研究的玻璃成分的光带隙(Eg)值在 1.93 至 2.12 eV 之间,而它们的厄巴赫能(ΔE)值在 0.14 至 0.24 eV 之间。平均电子氧化物极化率(2.84-1.62 Å3)和光学碱度(1.08-0.64)值的降低预示着玻璃网络中 SiO2 的加入会增加 Bi-O 键的共价性质。小金属化标准(0.311 至 0.325)预示着所制备系列适合用作非线性光学材料。利用 Z 扫描方法确定了三阶非线性光学特性,包括非线性吸收系数 (α2)、非线性电感 (χ(3)) 和非线性折射率 (η2)。光学研究表明,随着 Bi2O3 含量的减少,非桥氧原子(NBOs)的减少导致带隙增大,非线性折射率下降。制备的玻璃的光学极限研究还报告了动态范围(DR)和极限阈值。
{"title":"Linear and Nonlinear Optical Characteristics of Bismuth-Modified Lead-Silicate Glasses","authors":"Rajni Bala, Sujata Sanghi, Ashish Agarwal, Saroj Rani, Sanjay Gaur","doi":"10.1007/s12633-024-03139-w","DOIUrl":"https://doi.org/10.1007/s12633-024-03139-w","url":null,"abstract":"<p>Bismuth-modified lead silicate glasses with composition 20PbO∙(80-x)Bi<sub>2</sub>O<sub>3</sub>∙xSiO<sub>2</sub> (10 ≤ x ≤ 40 mol%) were fabricated by classical melt-quench technique. The density (D), crystalline volume (V<sub>C</sub>), and molar volume (V<sub>M</sub>) values decrease with a decrease in bismuth concentration. FTIR spectra suggest the formation of [BiO<sub>3</sub>], [BiO<sub>6</sub>], [SiO<sub>4</sub>], [PbO<sub>3</sub>], and [PbO<sub>4</sub>] structural units. The optical band gap (E<sub>g</sub>) values for the studied glass composition are determined to be between 1.93 and 2.12 eV, while their Urbach energy (∆E) values fall between 0.14 and 0.24 eV. A decrease in values of average electronic oxide polarizability (2.84‒1.62 Å<sup>3</sup>), and optical basicity (1.08‒0.64), predict the increase in the covalence nature of the Bi-O bond with the incorporation of SiO<sub>2</sub> in the glass network. The small metallization criterion (0.311 to 0.325) predicts the suitability of the prepared series to be utilized as nonlinear optical materials. The Z-scan approach was utilized to determine the third-order nonlinear optical characteristics, including the nonlinear absorption coefficient (α<sub>2</sub>), nonlinear susceptibility (χ<sup>(3)</sup>), and nonlinear refractive index (η<sub>2</sub>). Optical studies reveal that with the decrease in Bi<sub>2</sub>O<sub>3</sub> content, nonbridging oxygens (NBOs) decrease leads to an increase in bandgap and a drop in the nonlinear refractive index. The dynamic range (DR) and limiting threshold values have also been reported from the optical limiting studies of the prepared glasses.</p>","PeriodicalId":776,"journal":{"name":"Silicon","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1007/s12633-024-03148-9
Nguyen Van Hong
In this study, we used computer simulations of molecular dynamics to investigate structure and density heterogeneities of silica glass at glass transition temperature, 1475 K. We employed machine learning and data analysis techniques to gain a detailed understanding of the atomic-level structure of the silica glass. The investigation found that the network structure of the silica glass is composed of clusters with varying structures and densities. This structural heterogeneity with clusters is similar to the grains seen in polycrystalline materials. This observation indicates that silica glass can exist in multiple amorphous structural forms, analogous to polymorphism in crystalline materials. Additionally, we applied detailed 3D visualizations to effectively represent the structural characteristics of the silica glass. These visualizations provided valuable insights into the complex and heterogeneous nature of the silica network.
{"title":"Structure and Density Heterogeneities of Silica Glass: Insight from Datamining Techniques","authors":"Nguyen Van Hong","doi":"10.1007/s12633-024-03148-9","DOIUrl":"https://doi.org/10.1007/s12633-024-03148-9","url":null,"abstract":"<p>In this study, we used computer simulations of molecular dynamics to investigate structure and density heterogeneities of silica glass at glass transition temperature, 1475 K. We employed machine learning and data analysis techniques to gain a detailed understanding of the atomic-level structure of the silica glass. The investigation found that the network structure of the silica glass is composed of clusters with varying structures and densities. This structural heterogeneity with clusters is similar to the grains seen in polycrystalline materials. This observation indicates that silica glass can exist in multiple amorphous structural forms, analogous to polymorphism in crystalline materials. Additionally, we applied detailed 3D visualizations to effectively represent the structural characteristics of the silica glass. These visualizations provided valuable insights into the complex and heterogeneous nature of the silica network.</p>","PeriodicalId":776,"journal":{"name":"Silicon","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s12633-024-03144-z
Priya, Rajinder Kumar
Silicon (Si) is essential to the nutritional status of many monocot and dicot plant species, and it aids them in resisting abiotic and biotic challenges in various ways. This article explained the progress in exploring silicon-mediated resistance to sugarcane insect pests, its role in increasing juice quality attributes and cane production, the silicon status of soil and uptake by sugarcane plant, and the mechanisms involved. The aim is to determine the influence of different sources of Si application on the availability of silicon in soil, silicon uptake by plants, silicon effect in minimizing biotic stresses such as defence against sugarcane insect pest herbivory along with its effect on sugarcane yield in terms of juice and other component traits. There are two basic modes of action: enhanced physical or mechanical barriers and biochemical or molecular mechanisms that activate plant defence responses via bitrophic (plant-herbivore) interactions and tritrophic (plant-herbivore-natural enemy) interactions. By integrating the data reported in this research, a comprehensive understanding of the relationship between various sources of silicon treatments, increased sugarcane plant resistance and decreased sugarcane insect pest damage might be attained.
{"title":"Role of Silicon in Providing Defence Against Insect Herbivory in Sugarcane Production","authors":"Priya, Rajinder Kumar","doi":"10.1007/s12633-024-03144-z","DOIUrl":"https://doi.org/10.1007/s12633-024-03144-z","url":null,"abstract":"<p>Silicon (Si) is essential to the nutritional status of many monocot and dicot plant species, and it aids them in resisting abiotic and biotic challenges in various ways. This article explained the progress in exploring silicon-mediated resistance to sugarcane insect pests, its role in increasing juice quality attributes and cane production, the silicon status of soil and uptake by sugarcane plant, and the mechanisms involved. The aim is to determine the influence of different sources of Si application on the availability of silicon in soil, silicon uptake by plants, silicon effect in minimizing biotic stresses such as defence against sugarcane insect pest herbivory along with its effect on sugarcane yield in terms of juice and other component traits. There are two basic modes of action: enhanced physical or mechanical barriers and biochemical or molecular mechanisms that activate plant defence responses via bitrophic (plant-herbivore) interactions and tritrophic (plant-herbivore-natural enemy) interactions. By integrating the data reported in this research, a comprehensive understanding of the relationship between various sources of silicon treatments, increased sugarcane plant resistance and decreased sugarcane insect pest damage might be attained.</p>","PeriodicalId":776,"journal":{"name":"Silicon","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s12633-024-03141-2
Ling Lin, Ren Ren, Yulong Bai, Hongdan Ao, Pingya Luo
Deep and ultra-deep oil and gas resources have considerable potential and are now the primary resources to be explored and developed. However, the formation conditions get more harsh and challenging as the drilling depth increases. At 150°C, the majority of natural polymers start to degrade thermally, whereas synthetic polymers perform exceptionally well under even higher temperatures. Based on the excellent thermal stability of polysiloxane in other research areas, a modified siloxane monomer (F-PDMS) was synthesized and copolymerized with acrylamide (AM), 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and N-vinyl caprolactam (NVCL) to prepare a novel modified polysiloxane filtrate reducer (F-LS) with high-temperature resistance. The structure of products was characterized by Fourier transform infrared spectroscopy and the proton nuclear magnetic resonance, and their thermal stability was investigated using thermogravimetry. Furthermore, the rheological properties, filtration reduction, and inhibition performance of F-LS in base mud were evaluated. The results showed that after rolling at 220°C for 16 h, the API (American Petroleum Institute) filtrate loss (ambient temperature, 0.69 MPa) of 1% F-LS was only 8.8 mL, and the high-temperature (220 °C) and high-pressure (3.5 MPa) filtration was 26.8 mL, and the linear swelling rate of API filtrate liquid was dropped from 12.57% to 9.74%. Compared to Driscald and Polydrill, the effectiveness of filtrate loss reduction of F-LS was superior. The filtration control mechanism of F-LS was revealed based on the scanning electron microscopy analysis, particle size analysis, and Zeta potential test. F-LS could absorb on the clay surface and cover the pores on the surface of filter cake, and make the latter more condensed. Particularly, F-LS increased the absolute value of Zeta potential of clay particles, thus increasing their double-layer repulsion, and hydration film thickness, maintaining the proportion of submicron particles, thereby improving the stability of rheology and filtration of drilling fluids under harsh conditions.