Elizabeth M. Tsekrekas, Sophia J. Carretto, Doris C. Möncke, Alexis G. Clare
{"title":"Structural investigation of lithium bismuth borate glasses through Raman and infrared spectroscopies","authors":"Elizabeth M. Tsekrekas, Sophia J. Carretto, Doris C. Möncke, Alexis G. Clare","doi":"10.1111/ijag.16678","DOIUrl":null,"url":null,"abstract":"<p>The structure of lithium bismuth borate glasses in the compositional series <i>x</i>Bi<sub>2</sub>O<sub>3</sub>–25Li<sub>2</sub>O–(75 − <i>x</i>) B<sub>2</sub>O<sub>3</sub> was studied with the use of Raman and infrared (IR) spectroscopies. Transparent glasses formed between <i>x</i> = 0 and 55, whereas glass–ceramics formed between <i>x</i> = 60 and 75 mol% Bi<sub>2</sub>O<sub>3</sub>. Structural investigation on the borate network showed that the glasses were undermodified at high Bi<sub>2</sub>O<sub>3</sub> compositions with metaborate, pyroborate, and orthoborate triangles and tetrahedra being present past the stoichiometric orthoborate compositions (O/B = 3). Bi<sub>2</sub>O<sub>3</sub> was found to participate in the glass as both a network former and modifier, as observed in the Raman and IR spectra. Optical absorption spectra of the glasses show a redshift of the absorption edge with increased Bi<sub>2</sub>O<sub>3</sub>. Optical, thermal, and physical properties of the glasses were examined and correlated to the structural evolution.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 4","pages":"391-406"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16678","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The structure of lithium bismuth borate glasses in the compositional series xBi2O3–25Li2O–(75 − x) B2O3 was studied with the use of Raman and infrared (IR) spectroscopies. Transparent glasses formed between x = 0 and 55, whereas glass–ceramics formed between x = 60 and 75 mol% Bi2O3. Structural investigation on the borate network showed that the glasses were undermodified at high Bi2O3 compositions with metaborate, pyroborate, and orthoborate triangles and tetrahedra being present past the stoichiometric orthoborate compositions (O/B = 3). Bi2O3 was found to participate in the glass as both a network former and modifier, as observed in the Raman and IR spectra. Optical absorption spectra of the glasses show a redshift of the absorption edge with increased Bi2O3. Optical, thermal, and physical properties of the glasses were examined and correlated to the structural evolution.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.