Yuan Zhao, Ronak Paul, Sean Reid, Carolina Coimbra Vieira, Chris Wolfe, Yan Zhang, Rumi Chunara
{"title":"Constructing Social Vulnerability Indexes with Increased Data and Machine Learning Highlight the Importance of Wealth Across Global Contexts","authors":"Yuan Zhao, Ronak Paul, Sean Reid, Carolina Coimbra Vieira, Chris Wolfe, Yan Zhang, Rumi Chunara","doi":"10.1007/s11205-024-03386-9","DOIUrl":null,"url":null,"abstract":"<p>We consider the availability of new harmonized data sources and novel machine learning methodologies in the construction of a social vulnerability index (SoVI), a multidimensional measure that defines how individuals’ and communities may respond to hazards including natural disasters, economic changes, and global health crises. The factors underpinning social vulnerability—namely, economic status, age, disability, language, ethnicity, and location—are well understood from a theoretical perspective, and existing indices are generally constructed based on specific data chosen to represent these factors. Further, the indices’ construction methods generally assume structured, linear relationships among input variables and may not capture subtle nonlinear patterns more reflective of the multidimensionality of social vulnerability. We compare a procedure which considers an increased number of variables to describe the SoVI factors with existing approaches that choose specific variables based on consensus within the social science community. Reproducing the analysis across eight countries, as well as leveraging deep learning methods which in recent years have been found to be powerful for finding structure in data, demonstrate that wealth-related factors consistently explain the largest variance and are the most common element in social vulnerability.</p>","PeriodicalId":21943,"journal":{"name":"Social Indicators Research","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Indicators Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1007/s11205-024-03386-9","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the availability of new harmonized data sources and novel machine learning methodologies in the construction of a social vulnerability index (SoVI), a multidimensional measure that defines how individuals’ and communities may respond to hazards including natural disasters, economic changes, and global health crises. The factors underpinning social vulnerability—namely, economic status, age, disability, language, ethnicity, and location—are well understood from a theoretical perspective, and existing indices are generally constructed based on specific data chosen to represent these factors. Further, the indices’ construction methods generally assume structured, linear relationships among input variables and may not capture subtle nonlinear patterns more reflective of the multidimensionality of social vulnerability. We compare a procedure which considers an increased number of variables to describe the SoVI factors with existing approaches that choose specific variables based on consensus within the social science community. Reproducing the analysis across eight countries, as well as leveraging deep learning methods which in recent years have been found to be powerful for finding structure in data, demonstrate that wealth-related factors consistently explain the largest variance and are the most common element in social vulnerability.
期刊介绍:
Since its foundation in 1974, Social Indicators Research has become the leading journal on problems related to the measurement of all aspects of the quality of life. The journal continues to publish results of research on all aspects of the quality of life and includes studies that reflect developments in the field. It devotes special attention to studies on such topics as sustainability of quality of life, sustainable development, and the relationship between quality of life and sustainability. The topics represented in the journal cover and involve a variety of segmentations, such as social groups, spatial and temporal coordinates, population composition, and life domains. The journal presents empirical, philosophical and methodological studies that cover the entire spectrum of society and are devoted to giving evidences through indicators. It considers indicators in their different typologies, and gives special attention to indicators that are able to meet the need of understanding social realities and phenomena that are increasingly more complex, interrelated, interacted and dynamical. In addition, it presents studies aimed at defining new approaches in constructing indicators.