Research on static mechanical properties of high-performance rubber concrete

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Materials Pub Date : 2024-07-04 DOI:10.3389/fmats.2024.1426979
Jinjin Ge, Gilbert Mubiana, Xiaoyu Gao, Yunfei Xiao, Suyong Du
{"title":"Research on static mechanical properties of high-performance rubber concrete","authors":"Jinjin Ge, Gilbert Mubiana, Xiaoyu Gao, Yunfei Xiao, Suyong Du","doi":"10.3389/fmats.2024.1426979","DOIUrl":null,"url":null,"abstract":"High performance concrete (HPC) has the characteristics of high strength, high brittleness and low toughness, so it can not be widely used in engineering field. The rubber particles themselves have good elasticity and excellent wear resistance. To this end, rubber particles were used to prepare high performance rubber concrete (HPRC) instead of fine aggregate, and compressive strength and splitting tensile strength tests were carried out according to standard test methods. These data were evaluated, and it was found that adding different mesh number (10 mesh, 20 mesh, 30 mesh) and different content (10%, 20%, 30%) of rubber particles reduced the compressive and tensile properties of high-performance rubber concrete to different degrees. The rubber particles with l size of 30 mesh and content of 10% have the least influence on the mechanical properties of high-performance rubber concrete, and the compressive strength and tensile strength of HPC 28 days only decrease by 18.19% and 5.56%, respectively. From the damage form, the addition of rubber particles makes the high performance concrete change from brittle to ductile. The research shows that recycling rubber from waste tires into concrete manufacturing is an environmentally friendly and feasible waste management strategy. These results have the potential to replace concrete in construction and promote sustainable growth.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"66 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1426979","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High performance concrete (HPC) has the characteristics of high strength, high brittleness and low toughness, so it can not be widely used in engineering field. The rubber particles themselves have good elasticity and excellent wear resistance. To this end, rubber particles were used to prepare high performance rubber concrete (HPRC) instead of fine aggregate, and compressive strength and splitting tensile strength tests were carried out according to standard test methods. These data were evaluated, and it was found that adding different mesh number (10 mesh, 20 mesh, 30 mesh) and different content (10%, 20%, 30%) of rubber particles reduced the compressive and tensile properties of high-performance rubber concrete to different degrees. The rubber particles with l size of 30 mesh and content of 10% have the least influence on the mechanical properties of high-performance rubber concrete, and the compressive strength and tensile strength of HPC 28 days only decrease by 18.19% and 5.56%, respectively. From the damage form, the addition of rubber particles makes the high performance concrete change from brittle to ductile. The research shows that recycling rubber from waste tires into concrete manufacturing is an environmentally friendly and feasible waste management strategy. These results have the potential to replace concrete in construction and promote sustainable growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能橡胶混凝土的静力学性能研究
高性能混凝土(HPC)具有高强度、高脆性和低韧性的特点,因此无法广泛应用于工程领域。橡胶颗粒本身具有良好的弹性和优异的耐磨性。为此,我们用橡胶颗粒代替细骨料制备了高性能橡胶混凝土(HPRC),并根据标准测试方法进行了抗压强度和劈裂拉伸强度测试。对这些数据进行评估后发现,添加不同目数(10 目、20 目、30 目)和不同含量(10%、20%、30%)的橡胶颗粒会不同程度地降低高性能橡胶混凝土的抗压和抗拉性能。粒径为 30 目、含量为 10%的橡胶颗粒对高性能橡胶混凝土力学性能的影响最小,HPC 28 天抗压强度和抗拉强度仅分别降低了 18.19% 和 5.56%。从破坏形态上看,橡胶颗粒的加入使高性能混凝土由脆性变为韧性。研究表明,将废轮胎中的橡胶回收利用到混凝土制造中是一种环保、可行的废物管理策略。这些成果有可能在建筑中取代混凝土,促进可持续增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Materials
Frontiers in Materials Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
6.20%
发文量
749
审稿时长
12 weeks
期刊介绍: Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide. Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.
期刊最新文献
Mid-infrared optical coherence tomography and machine learning for inspection of 3D-printed ceramics at the micron scale Prediction of thermal protection performance and empirical study of flame-retardant cotton based on a combined model Performance-based engineering: formulating sustainable concrete with sawdust and steel fiber for superior mechanical properties Flexural behavior of a UHPC slab - FRP truss hybrid beam implementing a novel FRP joint and tailored shear connector Broadband acoustic pseudospin topological states based on the reverse spin-orbit coupling in generalized insulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1