From electronic structure to magnetism and skyrmions

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2024-06-06 DOI:10.1088/2516-1075/ad43d0
Vladislav Borisov
{"title":"From electronic structure to magnetism and skyrmions","authors":"Vladislav Borisov","doi":"10.1088/2516-1075/ad43d0","DOIUrl":null,"url":null,"abstract":"Solid state theory, density functional theory and its generalizations for correlated systems together with numerical simulations on supercomputers allow nowadays to model magnetic systems realistically and in detail and can be even used to predict new materials, paving the way for more rapid material development for applications in energy storage and conversion, information technologies, sensors, actuators etc. Modeling magnets on different length scales (between a few <inline-formula>\n<tex-math><?CDATA $\\mathrm{\\unicode{x00C5}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mtext>Å</mml:mtext></mml:mrow></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad43d0ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>ngström and several micrometers) requires, however, approaches with very different mathematical formulations. Parameters defining the material in each formulation can be determined either by fitting experimental data or from theoretical calculations and there exists a well-established approach for obtaining model parameters for each length scale using the information from the smaller length scale. In this review, this approach will be explained step-by-step in textbook style with examples of successful scale-bridging modeling of different classes of magnetic materials from the research literature as well as based on results newly obtained for this review.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad43d0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid state theory, density functional theory and its generalizations for correlated systems together with numerical simulations on supercomputers allow nowadays to model magnetic systems realistically and in detail and can be even used to predict new materials, paving the way for more rapid material development for applications in energy storage and conversion, information technologies, sensors, actuators etc. Modeling magnets on different length scales (between a few Å ngström and several micrometers) requires, however, approaches with very different mathematical formulations. Parameters defining the material in each formulation can be determined either by fitting experimental data or from theoretical calculations and there exists a well-established approach for obtaining model parameters for each length scale using the information from the smaller length scale. In this review, this approach will be explained step-by-step in textbook style with examples of successful scale-bridging modeling of different classes of magnetic materials from the research literature as well as based on results newly obtained for this review.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从电子结构到磁性和天膜
固态理论、密度泛函理论及其相关系统的广义理论,再加上超级计算机上的数值模拟,如今可以对磁性系统进行真实而详细的建模,甚至可以用来预测新材料,为更快速地开发应用于能源存储和转换、信息技术、传感器、致动器等领域的材料铺平道路。然而,不同长度尺度(从几埃到几微米)的磁体建模需要采用截然不同的数学公式。每种公式中定义材料的参数都可以通过拟合实验数据或理论计算来确定,并且有一种成熟的方法可以利用较小长度尺度的信息来获得每个长度尺度的模型参数。在本综述中,将以教科书的形式逐步解释这种方法,并举例说明研究文献中不同类别磁性材料尺度桥接建模的成功案例,以及基于本综述最新获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1