Strategic Atomic Interaction Modification for Highly Durable Inorganic Solid Electrolytes in Advanced All-Solid-State Li-Metal Batteries

Heebae Kim, Eunbin Jang, Jinil Cho, Seonmi Pyo, Heejun Yun, Jeewon Lee, Byeongyun Min, Juyeon Han, Jeeyoung Yoo, Youn Sang Kim
{"title":"Strategic Atomic Interaction Modification for Highly Durable Inorganic Solid Electrolytes in Advanced All-Solid-State Li-Metal Batteries","authors":"Heebae Kim, Eunbin Jang, Jinil Cho, Seonmi Pyo, Heejun Yun, Jeewon Lee, Byeongyun Min, Juyeon Han, Jeeyoung Yoo, Youn Sang Kim","doi":"10.1002/sstr.202400091","DOIUrl":null,"url":null,"abstract":"All-solid-state Li-metal battery (ASSLB) represents advantageous energy storage system for automotive applications. For ASSLB, inorganic solid electrolyte is essential in determining safety and cycling performance. However, significant challenges persist in practical construction of ASSLB with optimized electrolyte. Specifically, electrolyte's structural instability influencing its electrochemical performance remains critical issue within typical operating temperatures for ASSLB in electric vehicles. Herein, this challenge is fundamentally addressed by substituting trace amount of lithium with cadmium, which lacks crystal field stabilization energy. This strategy of atomic interaction modification has induced electrolyte's structural distortion and electronic alteration by deliberately introducing disorder at local lithium sites. Li symmetric cell with cadmium-substituted antiperovskite solid electrolyte exhibits outstanding critical current density of 11.5 mA cm<sup>−2</sup> (5.75 mAh cm<sup>−2</sup>) and excellent stability for 3000 h at 10.0 mA cm<sup>−2</sup> (5.0 mAh cm<sup>−2</sup>). This study highlights explicit research direction for breakthrough of ASSLB, focusing on understanding how local distortion affects complex inorganic materials.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state Li-metal battery (ASSLB) represents advantageous energy storage system for automotive applications. For ASSLB, inorganic solid electrolyte is essential in determining safety and cycling performance. However, significant challenges persist in practical construction of ASSLB with optimized electrolyte. Specifically, electrolyte's structural instability influencing its electrochemical performance remains critical issue within typical operating temperatures for ASSLB in electric vehicles. Herein, this challenge is fundamentally addressed by substituting trace amount of lithium with cadmium, which lacks crystal field stabilization energy. This strategy of atomic interaction modification has induced electrolyte's structural distortion and electronic alteration by deliberately introducing disorder at local lithium sites. Li symmetric cell with cadmium-substituted antiperovskite solid electrolyte exhibits outstanding critical current density of 11.5 mA cm−2 (5.75 mAh cm−2) and excellent stability for 3000 h at 10.0 mA cm−2 (5.0 mAh cm−2). This study highlights explicit research direction for breakthrough of ASSLB, focusing on understanding how local distortion affects complex inorganic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在先进的全固态锂金属电池中对高耐久性无机固体电解质进行战略性原子相互作用修饰
全固态锂金属电池(ASSLB)是汽车应用中的优势储能系统。对于全固态锂金属电池而言,无机固体电解质对其安全性和循环性能至关重要。然而,在实际建造具有优化电解质的 ASSLB 时,仍然面临着巨大的挑战。具体来说,电解质的结构不稳定性会影响其电化学性能,这在电动汽车 ASSLB 的典型工作温度下仍是一个关键问题。在这里,通过用缺乏晶体场稳定能量的镉替代微量锂,从根本上解决了这一难题。这种原子相互作用修饰策略通过故意在局部锂位点引入无序状态,诱发电解质结构畸变和电子变化。使用镉取代的反包晶石固体电解质的锂对称电池表现出卓越的临界电流密度,达到 11.5 mA cm-2(5.75 mAh cm-2),并在 10.0 mA cm-2(5.0 mAh cm-2)的条件下保持了 3000 小时的卓越稳定性。这项研究强调了突破 ASSLB 的明确研究方向,重点是了解局部变形如何影响复杂的无机材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1