Blackberry synthetic seeds storage: effects of temperature, time, and sowing substrate

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-03 DOI:10.1007/s11240-024-02816-3
Luca Regni, Maurizio Micheli, Alberto Marco Del Pino, Simona Lucia Facchin, Emanuele Rabica, Leonardo Camilloni, Arianna Cesarini, Primo Proietti
{"title":"Blackberry synthetic seeds storage: effects of temperature, time, and sowing substrate","authors":"Luca Regni, Maurizio Micheli, Alberto Marco Del Pino, Simona Lucia Facchin, Emanuele Rabica, Leonardo Camilloni, Arianna Cesarini, Primo Proietti","doi":"10.1007/s11240-024-02816-3","DOIUrl":null,"url":null,"abstract":"<p>In vitro propagation, is becoming the predominant method for blackberry propagation due to its advantages compared to agamic traditional propagation methods. Synthetic seed technology represents a promising approach to further enhance the productivity of in vitro propagation facilitating the exchange of plant materials among laboratories and contributing to germplasm conservation efforts. This study aimed to establish an optimal protocol for the storage and sowing of synthetic blackberry seeds obtained through the encapsulation of clump bases. The synthetic seeds were sown without storage (Control) and after storage periods of 30, 60, and 120 days at 4 °C and 25 °C in the dark, in three different substrates (agarised, perlite, and potting). After forty-five days from sowing viability, regeneration rate, shoot and root numbers and lengths, as well as fresh and dry weights of the plantlets, were assessed. Results indicated that agarised substrate consistently exhibited favourable outcomes, with sustained regeneration rates and robust plantlet development even after prolonged storage at 4 °C. Synthetic seeds sown in perlite and potting substrates demonstrated enhanced regeneration rates following storage at 4 °C for 60 and 120 days. On the contrary, storage at 25 °C resulted in a notable decline in regeneration rate, highlighting its inadequacy for blackberry synthetic seed conservation purposes. These findings underscore the importance of sowing substrate selection and storage temperature in optimizing the storage and sowing protocols for synthetic blackberry seeds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02816-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro propagation, is becoming the predominant method for blackberry propagation due to its advantages compared to agamic traditional propagation methods. Synthetic seed technology represents a promising approach to further enhance the productivity of in vitro propagation facilitating the exchange of plant materials among laboratories and contributing to germplasm conservation efforts. This study aimed to establish an optimal protocol for the storage and sowing of synthetic blackberry seeds obtained through the encapsulation of clump bases. The synthetic seeds were sown without storage (Control) and after storage periods of 30, 60, and 120 days at 4 °C and 25 °C in the dark, in three different substrates (agarised, perlite, and potting). After forty-five days from sowing viability, regeneration rate, shoot and root numbers and lengths, as well as fresh and dry weights of the plantlets, were assessed. Results indicated that agarised substrate consistently exhibited favourable outcomes, with sustained regeneration rates and robust plantlet development even after prolonged storage at 4 °C. Synthetic seeds sown in perlite and potting substrates demonstrated enhanced regeneration rates following storage at 4 °C for 60 and 120 days. On the contrary, storage at 25 °C resulted in a notable decline in regeneration rate, highlighting its inadequacy for blackberry synthetic seed conservation purposes. These findings underscore the importance of sowing substrate selection and storage temperature in optimizing the storage and sowing protocols for synthetic blackberry seeds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑莓合成种子贮藏:温度、时间和播种基质的影响
与传统的农业繁殖方法相比,体外繁殖具有优势,正逐渐成为黑莓繁殖的主要方法。合成种子技术是一种很有前景的方法,可进一步提高体外繁殖的产量,促进实验室之间植物材料的交流,并有助于种质资源的保护工作。本研究旨在为通过丛生基部封装获得的合成黑莓种子的贮藏和播种制定最佳方案。合成种子未经贮藏(对照组),在 4 °C 和 25 °C 黑暗环境中贮藏 30 天、60 天和 120 天后,在三种不同的基质(琼脂、珍珠岩和盆栽)中播种。播种四十五天后,对小苗的存活率、再生率、芽和根的数量和长度以及鲜重和干重进行了评估。结果表明,琼脂基质始终表现出良好的结果,即使在 4 °C下长期储存,也能保持再生率和小植株的健壮发育。播种在珍珠岩和盆栽基质中的合成种子在 4 °C 下储存 60 天和 120 天后,再生率有所提高。相反,在 25 °C下贮藏会导致再生率明显下降,这说明该温度条件不适合黑莓合成种子的保存。这些发现强调了播种基质选择和贮藏温度对优化合成黑莓种子贮藏和播种方案的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1