Equipment Damage Measurement Method of Wartime Based on FCE-PCA-RF

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-07-04 DOI:10.23919/jsee.2024.000065
Mingyu Li, Lu Gao, Hongwei Xu, Kai Li, Yisong Huang
{"title":"Equipment Damage Measurement Method of Wartime Based on FCE-PCA-RF","authors":"Mingyu Li, Lu Gao, Hongwei Xu, Kai Li, Yisong Huang","doi":"10.23919/jsee.2024.000065","DOIUrl":null,"url":null,"abstract":"As the “engine” of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy's attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation (FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85% of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"11 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000065","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the “engine” of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy's attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation (FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85% of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 FCE-PCA-RF 的战时设备损坏测量方法
装备维修保障作为装备持续运行、反复作业的 "发动机",在对称作战体系对抗中的作用更加突出。作为计划和实施装备维修任务的依据和指南,装备损伤测量是有效实施维修保障的重要保障。本文首先从战时装备损伤测量的基本问题出发,从敌方属性、我方属性和战场环境三方面全面分析了损伤测量的影响因素。其次,本文在模糊综合评价(FCE)的基础上确定了关键因素,并对关键因素进行了主成分分析(PCA)。最后,将代表 85% 以上数据特征的主成分作为输入,将设备损坏量作为输出。通过人工神经网络(ANN)和随机森林(RF)对数据进行训练和测试。总之,FCE-PCA-RF 可作为战时装备损伤估算研究的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1