Synergistic Nanoarchitectonics: Precision Membrane Engineering for Rare Earth Selective Separation

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-06 DOI:10.1002/adfm.202409274
Zixiao Lv, Xin Zhang, Qifeng Gao, Chuanxi Wen, Yuqi He, HongXin Tan, Lijuan Qian, Wei Qi, Ximeng Chen, Zhan Li
{"title":"Synergistic Nanoarchitectonics: Precision Membrane Engineering for Rare Earth Selective Separation","authors":"Zixiao Lv, Xin Zhang, Qifeng Gao, Chuanxi Wen, Yuqi He, HongXin Tan, Lijuan Qian, Wei Qi, Ximeng Chen, Zhan Li","doi":"10.1002/adfm.202409274","DOIUrl":null,"url":null,"abstract":"Rare earth elements (REEs) are vital in high‐tech industries and defense due to their strategic significance. Crafting an efficient membranes channel for REE separation poses a significant challenge. Employing 2‐methylimidazole‐hydrolyzed OH<jats:sup>−</jats:sup>, dopamine polymerization is initiated and then Zn<jats:sup>2+</jats:sup> coordinates with 2‐methylimidazole on PDA surfaces. The confined symbiotic reaction yields 2D vertical heterojunctions of GO/ZIF‐8/PDA (G/Z/P). During separation, partially dehydrated smaller hydrated lanthanide ions preferentially access interlayers, expanding and stabilizing the interlayer space by coordinating with PDA, thus excluding larger hydrated scandium ions from the membranes. Some scandium ions entering interlayer channels are sequestered by N in size‐matched ZIF‐8 pores. This distinctive mechanism facilitates selective scandium separation from other REEs (other REEs/Sc selectivity ≈68.73), achieving nearly complete Sc<jats:sup>3+</jats:sup> rejection in a single step. The methodology offers unprecedented insights into precise nano‐space material synthesis, indicating promising strides in advancing scandium production.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202409274","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rare earth elements (REEs) are vital in high‐tech industries and defense due to their strategic significance. Crafting an efficient membranes channel for REE separation poses a significant challenge. Employing 2‐methylimidazole‐hydrolyzed OH, dopamine polymerization is initiated and then Zn2+ coordinates with 2‐methylimidazole on PDA surfaces. The confined symbiotic reaction yields 2D vertical heterojunctions of GO/ZIF‐8/PDA (G/Z/P). During separation, partially dehydrated smaller hydrated lanthanide ions preferentially access interlayers, expanding and stabilizing the interlayer space by coordinating with PDA, thus excluding larger hydrated scandium ions from the membranes. Some scandium ions entering interlayer channels are sequestered by N in size‐matched ZIF‐8 pores. This distinctive mechanism facilitates selective scandium separation from other REEs (other REEs/Sc selectivity ≈68.73), achieving nearly complete Sc3+ rejection in a single step. The methodology offers unprecedented insights into precise nano‐space material synthesis, indicating promising strides in advancing scandium production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同纳米架构:稀土选择性分离的精密膜工程
稀土元素具有重要的战略意义,在高科技产业和国防领域至关重要。为稀土元素分离设计一种高效的膜通道是一项重大挑战。利用 2-甲基咪唑-水解 OH-,启动多巴胺聚合,然后 Zn2+ 与 2-甲基咪唑在 PDA 表面配位。密闭共生反应产生了二维垂直异质结 GO/ZIF-8/PDA(G/Z/P)。在分离过程中,部分脱水的较小水合镧离子优先进入层间,通过与 PDA 配位来扩大和稳定层间空间,从而将较大的水合钪离子排除在膜之外。进入层间通道的一些钪离子会被尺寸匹配的 ZIF-8 孔隙中的 N 所封闭。这种独特的机制促进了钪与其他稀土元素的选择性分离(其他稀土元素/钪的选择性≈68.73),从而在一个步骤中实现了几乎完全的 Sc3+ 排斥。该方法为精确的纳米空间材料合成提供了前所未有的见解,表明在推进钪生产方面取得了可喜的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode An Ultrahydrating Polymer that Protects Protein Therapeutics and RNA-Lipid Nanoparticles Against Freezing, Heat and Lyophilization Stress Kinetics-Matched Electrode Design for Zn-Metal Free Zinc Ion Batteries with High Energy Density and Stabilities Harnessing the Manipulation of Single Cells to Construct Biological Structures: Tools and Applications Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1