A Divalent Metal Cation–Metabolite Interaction Model Reveals Cation Buffering and Speciation

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-07-08 DOI:10.1021/acs.biochem.4c00125
Jacob P. Sieg*, 
{"title":"A Divalent Metal Cation–Metabolite Interaction Model Reveals Cation Buffering and Speciation","authors":"Jacob P. Sieg*,&nbsp;","doi":"10.1021/acs.biochem.4c00125","DOIUrl":null,"url":null,"abstract":"<p >I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite–Mg<sup>2+</sup> interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular <i>Escherichia coli</i> concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup>, and Zn<sup>2+</sup>), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite–Mg2+ interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular Escherichia coli concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg2+, Ca2+, Mn2+, and Zn2+), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二价金属阳离子-代谢物相互作用模型揭示了阳离子缓冲作用和种类。
我提出的观点是,二价金属组和代谢组可以建模为一个螯合相互作用网络,而不是独立的实体。我回顾了在理解复杂细胞环境方面的进展,特别是最近在模拟代谢物-Mg2+相互作用方面的贡献。然后,我展示了这些策略的一个简单扩展,大约基于细胞内大肠杆菌的浓度。该模型由具有一定细胞浓度和物理特性的四种二价金属阳离子(Mg2+、Ca2+、Mn2+ 和 Zn2+)、八种代表性代谢物以及相互作用常数组成。我应用该模型预测了二价金属阳离子在游离和代谢物螯合物种之间的分型。这种方法揭示了潜在的有益特性,包括将游离的二价金属阳离子维持在生物相关浓度、缓冲游离的二价金属阳离子以及富集功能性代谢物螯合物种。虽然这种建模策略目前受限于可用的相互作用系数,但可以推广到更复杂的系统中。总之,生物化学家应考虑细胞代谢物与二价金属阳离子形成螯合作用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Bioinformatic, Enzymatic, and Structural Characterization of Trichuris suis Hexosaminidase HEX-2. Removal of Metal from Carboxypeptidase A Proceeds via a Split Pathway: Implications for the General Mechanisms of Metalloenzyme Inactivation by Chelating Agents. Siderophores: A Case Study in Translational Chemical Biology. Composition Heterogeneity of Metal Ions Bound at the Oxygen-Evolving Center of Photosystem II in Living Cells. Exploring the Effects of Intersubunit Interface Mutations on Virus-Like Particle Structure and Stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1