Pub Date : 2024-11-19Epub Date: 2024-10-11DOI: 10.1021/acs.biochem.4c00282
Kailash Prasad Prajapati, Masihuzzaman Ansari, Shikha Mittal, Nishant Mishra, Anubhuti Bhatia, Om Prakash Mahato, Bibin Gnanadhason Anand, Karunakar Kar
Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.
{"title":"Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity.","authors":"Kailash Prasad Prajapati, Masihuzzaman Ansari, Shikha Mittal, Nishant Mishra, Anubhuti Bhatia, Om Prakash Mahato, Bibin Gnanadhason Anand, Karunakar Kar","doi":"10.1021/acs.biochem.4c00282","DOIUrl":"10.1021/acs.biochem.4c00282","url":null,"abstract":"<p><p>Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2977-2989"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-28DOI: 10.1021/acs.biochem.4c00412
Susmita Sarkar, Jagannath Mondal
Within the framework of liquid-liquid phase separation (LLPS), biomolecular condensation orchestrates vital cellular processes, and its dysregulation is implicated in severe pathological conditions. Recent studies highlight the role of intrinsically disordered proteins (IDPs) in LLPS, yet the influence of microenvironmental factors has remained a puzzling factor. Here, via computational simulation of the impact of solution conditions on LLPS behavior of neurologically pathogenic IDP Aβ40, we chanced upon a salt-driven reentrant condensation phenomenon, wherein Aβ40 aggregation increases with low salt concentrations (25-50 mM), followed by a decline with further salt increments. An exploration of the thermodynamic and kinetic signatures of reentrant condensation unveils a nuanced interplay between protein electrostatics and ionic strength as potential drivers. Notably, the charged residues of the N-terminus exhibit a nonmonotonic response to salt screening, intricately linked to the recurrence of reentrant behavior in hydrophobic core-induced condensation. Intriguingly, our findings also unveil the reappearance of similar reentrant condensation phenomena under varying temperature conditions. Collectively, our study illuminates the profoundly context-dependent nature of Aβ40s liquid-liquid phase separation behavior, extending beyond its intrinsic molecular framework, where microenvironmental cues wield significant influence over its aberrant functionality.
{"title":"How Salt and Temperature Drive Reentrant Condensation of Aβ40.","authors":"Susmita Sarkar, Jagannath Mondal","doi":"10.1021/acs.biochem.4c00412","DOIUrl":"10.1021/acs.biochem.4c00412","url":null,"abstract":"<p><p>Within the framework of liquid-liquid phase separation (LLPS), biomolecular condensation orchestrates vital cellular processes, and its dysregulation is implicated in severe pathological conditions. Recent studies highlight the role of intrinsically disordered proteins (IDPs) in LLPS, yet the influence of microenvironmental factors has remained a puzzling factor. Here, via computational simulation of the impact of solution conditions on LLPS behavior of neurologically pathogenic IDP Aβ40, we chanced upon a salt-driven reentrant condensation phenomenon, wherein Aβ40 aggregation increases with low salt concentrations (25-50 mM), followed by a decline with further salt increments. An exploration of the thermodynamic and kinetic signatures of reentrant condensation unveils a nuanced interplay between protein electrostatics and ionic strength as potential drivers. Notably, the charged residues of the N-terminus exhibit a nonmonotonic response to salt screening, intricately linked to the recurrence of reentrant behavior in hydrophobic core-induced condensation. Intriguingly, our findings also unveil the reappearance of similar reentrant condensation phenomena under varying temperature conditions. Collectively, our study illuminates the profoundly context-dependent nature of Aβ40s liquid-liquid phase separation behavior, extending beyond its intrinsic molecular framework, where microenvironmental cues wield significant influence over its aberrant functionality.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"3030-3044"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-11-04DOI: 10.1021/acs.biochem.4c00534
Ishita Sengupta
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
{"title":"Insights into the Structure and Dynamics of Proteins from <sup>19</sup>F Solution NMR Spectroscopy.","authors":"Ishita Sengupta","doi":"10.1021/acs.biochem.4c00534","DOIUrl":"10.1021/acs.biochem.4c00534","url":null,"abstract":"<p><p><sup>19</sup>F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 <sup>19</sup>F nucleus from biomolecules results in background-free, high-resolution <sup>19</sup>F NMR spectra. The introduction of <sup>19</sup>F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical <sup>1</sup>H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel <sup>19</sup>F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of <sup>19</sup>F NMR spectroscopy. The increased interest and widespread use of <sup>19</sup>F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional <sup>13</sup>C/<sup>15</sup>N-based methods. This Review focuses on the advances in <sup>19</sup>F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel <sup>19</sup>F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2958-2968"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-11-03DOI: 10.1021/acs.biochem.4c00607
Zhi Yue, Jiangbo Wu, Da Teng, Zhi Wang, Gregory A Voth
Influenza B viruses have cocirculated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we performed membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant channel to explore its pH-dependent conformational switch. Simulations captured the activation as the first histidine (His19) protonates and revealed the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and preprotonated His27. Crucially, we provided an atomic-level understanding of the symmetric proton conduction by identifying preactivating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible antiflu drug design efforts.
{"title":"Activation of the Influenza B M2 Proton Channel (BM2).","authors":"Zhi Yue, Jiangbo Wu, Da Teng, Zhi Wang, Gregory A Voth","doi":"10.1021/acs.biochem.4c00607","DOIUrl":"10.1021/acs.biochem.4c00607","url":null,"abstract":"<p><p>Influenza B viruses have cocirculated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we performed membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant channel to explore its pH-dependent conformational switch. Simulations captured the activation as the first histidine (His19) protonates and revealed the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and preprotonated His27. Crucially, we provided an atomic-level understanding of the symmetric proton conduction by identifying preactivating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible antiflu drug design efforts.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"3011-3019"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-11-05DOI: 10.1021/acs.biochem.4c00532
Qiuyue Nie, Chunxiao Sun, Shuai Liu, Xue Gao
Fungal ribosomally synthesized and post-translationally modified peptides (RiPPs) are a vital class of natural products known for their biological activities including anticancer, antitubulin, antinematode, and immunosuppressant properties. These bioactive fungal RiPPs play key roles in chemical ecology and have a significant therapeutic potential. Their structural diversity, which arises from intricate post-translational modifications of precursor peptides, is particularly remarkable. Despite their biological and ecological importance, the discovery of fungal RiPPs has been historically challenging and only a limited number have been identified. To date, known fungal RiPPs are primarily grouped into three groups: cycloamanides and borosins from basidiomycetes and dikaritins from ascomycetes. Recent advancements in bioinformatics have revealed the vast untapped potential of fungi to produce RiPPs, offering new opportunities for their discovery. This review highlights recent progress in fungal RiPP biosynthesis and genome-guided discovery strategies. We propose that combining the knowledge of fungal RiPP biosynthetic pathways with advanced gene-editing technologies and bioinformatic tools will significantly accelerate the discovery of novel bioactive fungal RiPPs.
{"title":"Exploring Bioactive Fungal RiPPs: Advances, Challenges, and Future Prospects.","authors":"Qiuyue Nie, Chunxiao Sun, Shuai Liu, Xue Gao","doi":"10.1021/acs.biochem.4c00532","DOIUrl":"10.1021/acs.biochem.4c00532","url":null,"abstract":"<p><p>Fungal ribosomally synthesized and post-translationally modified peptides (RiPPs) are a vital class of natural products known for their biological activities including anticancer, antitubulin, antinematode, and immunosuppressant properties. These bioactive fungal RiPPs play key roles in chemical ecology and have a significant therapeutic potential. Their structural diversity, which arises from intricate post-translational modifications of precursor peptides, is particularly remarkable. Despite their biological and ecological importance, the discovery of fungal RiPPs has been historically challenging and only a limited number have been identified. To date, known fungal RiPPs are primarily grouped into three groups: cycloamanides and borosins from basidiomycetes and dikaritins from ascomycetes. Recent advancements in bioinformatics have revealed the vast untapped potential of fungi to produce RiPPs, offering new opportunities for their discovery. This review highlights recent progress in fungal RiPP biosynthesis and genome-guided discovery strategies. We propose that combining the knowledge of fungal RiPP biosynthetic pathways with advanced gene-editing technologies and bioinformatic tools will significantly accelerate the discovery of novel bioactive fungal RiPPs.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2948-2957"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-23DOI: 10.1021/acs.biochem.4c00579
Kundan Kumar, Mrunal Pazare, Girish S Ratnaparkhi, Siddhesh S Kamat
The chemoproteomics technique, activity-based protein profiling (ABPP), has proven to be an invaluable tool in assigning functions to enzymes. The serine hydrolase (SH) enzyme superfamily, in particular, has served as an excellent example in displaying the versatility of various ABPP platforms and has resulted in a comprehensive cataloging of the biochemical activities associated within this superfamily. Besides SHs, in mammals, several other enzyme classes have been thoroughly investigated using ABPP platforms. However, the utility of ABPP platforms in fly models remains underexplored. Realizing this knowledge gap, leveraging complementary ABPP platforms, we reported the full array of SH activities during various developmental stages and adult tissues in the fruit fly (Drosophila melanogaster). Following up on this study, using ABPP, we mapped SH activities in adult fruit flies in an infection model and found that a gut-resident lipase CG17192 showed increased activity during infection. To assign a biological function to this uncharacterized lipase, we performed an untargeted lipidomics analysis and found that phosphatidylinositols were significantly elevated when CG17192 was depleted in the adult fruit fly gut. Next, we overexpressed this lipase in insect cells, and using biochemical assays, we show that CG17192 is a secreted enzyme that has phospholipase C (PLC) type activity, with phosphatidylinositol being a preferred substrate. Finally, we show during infection that heightened CG17192 regulates phosphatidylinositol levels and, by doing so, likely modulates signaling pathways in the adult fruit fly gut that might be involved in the resolution of this pathophysiological condition.
{"title":"CG17192 is a Phospholipase That Regulates Signaling Lipids in the <i>Drosophila</i> Gut upon Infection.","authors":"Kundan Kumar, Mrunal Pazare, Girish S Ratnaparkhi, Siddhesh S Kamat","doi":"10.1021/acs.biochem.4c00579","DOIUrl":"10.1021/acs.biochem.4c00579","url":null,"abstract":"<p><p>The chemoproteomics technique, activity-based protein profiling (ABPP), has proven to be an invaluable tool in assigning functions to enzymes. The serine hydrolase (SH) enzyme superfamily, in particular, has served as an excellent example in displaying the versatility of various ABPP platforms and has resulted in a comprehensive cataloging of the biochemical activities associated within this superfamily. Besides SHs, in mammals, several other enzyme classes have been thoroughly investigated using ABPP platforms. However, the utility of ABPP platforms in fly models remains underexplored. Realizing this knowledge gap, leveraging complementary ABPP platforms, we reported the full array of SH activities during various developmental stages and adult tissues in the fruit fly (<i>Drosophila melanogaster</i>). Following up on this study, using ABPP, we mapped SH activities in adult fruit flies in an infection model and found that a gut-resident lipase CG17192 showed increased activity during infection. To assign a biological function to this uncharacterized lipase, we performed an untargeted lipidomics analysis and found that phosphatidylinositols were significantly elevated when <i>CG17192</i> was depleted in the adult fruit fly gut. Next, we overexpressed this lipase in insect cells, and using biochemical assays, we show that CG17192 is a secreted enzyme that has phospholipase C (PLC) type activity, with phosphatidylinositol being a preferred substrate. Finally, we show during infection that heightened CG17192 regulates phosphatidylinositol levels and, by doing so, likely modulates signaling pathways in the adult fruit fly gut that might be involved in the resolution of this pathophysiological condition.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"3000-3010"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-29DOI: 10.1021/acs.biochem.4c00326
Han N Phan, Paul D Swartz, Medha Gangopadhyay, Yisong Guo, Alex I Smirnov, Thomas M Makris
Chlamydia protein associating with death domains (CtCADD) is involved in the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe2 cofactor, previous activity studies have shown that CtCADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe2+/Mn2+ cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an in crystallo metalation approach, CtCADD was solved in the apo, Fe2+2, Mn2+2, and catalytically active Fe2+/Mn2+ forms to identify the probable site for Mn binding. The analysis of CtCADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn3+/Fe3+ cluster.
{"title":"Assembly of a Heterobimetallic Fe/Mn Cofactor in the <i>para</i>-Aminobenzoate Synthase Chlamydia Protein Associating with Death Domains (CADD) Initiates Long-Range Radical Hole-Hopping.","authors":"Han N Phan, Paul D Swartz, Medha Gangopadhyay, Yisong Guo, Alex I Smirnov, Thomas M Makris","doi":"10.1021/acs.biochem.4c00326","DOIUrl":"10.1021/acs.biochem.4c00326","url":null,"abstract":"<p><p>Chlamydia protein associating with death domains (<i>Ct</i>CADD) is involved in the biosynthesis of <i>p</i>-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe<sub>2</sub> cofactor, previous activity studies have shown that <i>Ct</i>CADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe<sup>2+</sup>/Mn<sup>2+</sup> cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an <i>in crystallo</i> metalation approach, <i>Ct</i>CADD was solved in the apo, Fe<sup>2+</sup><sub>2</sub>, Mn<sup>2+</sup><sub>2</sub>, and catalytically active Fe<sup>2+</sup>/Mn<sup>2+</sup> forms to identify the probable site for Mn binding. The analysis of <i>Ct</i>CADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn<sup>3+</sup>/Fe<sup>3+</sup> cluster.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"3020-3029"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-30DOI: 10.1021/acs.biochem.4c00418
Jimin Hu, Duc T Huynh, Michael Boyce
Glycosylation is biochemically complex and functionally critical to a wide range of processes and disease states, making it a vibrant area of contemporary research. Here, we highlight a selection of notable recent advances in the glycobiology of SARS-CoV-2 infection and immunity, cancer biology and immunotherapy, and newly discovered glycosylated RNAs. Together, these studies illustrate the significance of glycosylation in normal biology and the great promise of manipulating glycosylation for therapeutic benefit in disease.
{"title":"Sugar Highs: Recent Notable Breakthroughs in Glycobiology.","authors":"Jimin Hu, Duc T Huynh, Michael Boyce","doi":"10.1021/acs.biochem.4c00418","DOIUrl":"10.1021/acs.biochem.4c00418","url":null,"abstract":"<p><p>Glycosylation is biochemically complex and functionally critical to a wide range of processes and disease states, making it a vibrant area of contemporary research. Here, we highlight a selection of notable recent advances in the glycobiology of SARS-CoV-2 infection and immunity, cancer biology and immunotherapy, and newly discovered glycosylated RNAs. Together, these studies illustrate the significance of glycosylation in normal biology and the great promise of manipulating glycosylation for therapeutic benefit in disease.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2937-2947"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-28DOI: 10.1021/acs.biochem.4c00361
Fei Lou, Wenbin Zhou, Meral Tunc-Ozdemir, Jing Yang, Vaithish Velazhahan, Christopher G Tate, Alan M Jones
Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, β-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting β-arrestin, but it is not clear how. Arrestins are not encoded in the Arabidopsis thaliana genome, yet Arabidopsis cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.
7-跨膜(7TM)受体感受到的细胞外信号会启动脱敏作用,包括将这些受体从质膜上移除。在动物细胞中,激动剂结合通常会诱发许多 7TM G 蛋白偶联受体的柔性 C 端区和/或细胞内环 3 发生磷酸化,从而招募细胞质中间适配体 β-arrestin,导致凝集素介导的内吞(CME)和转录变化等下游信号传导。有些 7TM 受体在不招募 β-阿restin的情况下进行 CME,但目前尚不清楚是如何进行的。拟南芥基因组中没有捕获素编码,但拟南芥细胞中有一种信号诱导的7TM蛋白CME,即G信号调节器1(AtRGS1)。在这里,我们证明了 retromer 复合物的一个成分--空泡蛋白分选相关 26(VPS26)--以 VPS26A/B 异二聚体的形式与 AtRGS1 的磷酸化 C 端区域结合,形成下游信号转导所需的复合物。我们认为 VPS26 在 AtRGS1 的 CME 中扮演了类似捕获素的适配体的角色。
{"title":"VPS26 Moonlights as a β-Arrestin-like Adapter for a 7-Transmembrane RGS Protein in <i>Arabidopsis thaliana</i>.","authors":"Fei Lou, Wenbin Zhou, Meral Tunc-Ozdemir, Jing Yang, Vaithish Velazhahan, Christopher G Tate, Alan M Jones","doi":"10.1021/acs.biochem.4c00361","DOIUrl":"10.1021/acs.biochem.4c00361","url":null,"abstract":"<p><p>Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, β-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting β-arrestin, but it is not clear how. Arrestins are not encoded in the <i>Arabidopsis thaliana</i> genome, yet <i>Arabidopsis</i> cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2990-2999"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin. The structural basis and determinants influencing BcmA enzyme activity and substrate selectivity are not well understood. Here, we report the crystal structure of SsBcmA from Streptomyces sapporonensis. Through structural comparison and systematic site-directed mutagenesis, we highlight the significance of key residues located in the aminoacyl-binding pocket for enzyme activity and substrate specificity. In particular, the nonconserved residues D161 and K165 in pocket P2 are essential for the activity of SsBcmA without significant alteration of the substrate specificity, while the conserved residues F158 as well as F210 and S211 in P2 are responsible for determining substrate selectivity. These findings facilitate the understanding of how CDPSs selectively accept hydrophobic substrates and provide additional clues for the engineering of these enzymes for synthetic biology applications.
{"title":"Crystal Structure and Mutagenesis of an XYP Subfamily Cyclodipeptide Synthase Reveal Key Determinants of Enzyme Activity and Substrate Specificity.","authors":"Jun-Bin He, Yichen Ren, Peifeng Li, Yi-Pei Liu, Hai-Xue Pan, Lin-Juan Huang, Jiayuan Wang, Pengfei Fang, Gong-Li Tang","doi":"10.1021/acs.biochem.4c00505","DOIUrl":"10.1021/acs.biochem.4c00505","url":null,"abstract":"<p><p>Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin. The structural basis and determinants influencing BcmA enzyme activity and substrate selectivity are not well understood. Here, we report the crystal structure of <i>Ss</i>BcmA from <i>Streptomyces sapporonensis</i>. Through structural comparison and systematic site-directed mutagenesis, we highlight the significance of key residues located in the aminoacyl-binding pocket for enzyme activity and substrate specificity. In particular, the nonconserved residues D161 and K165 in pocket P2 are essential for the activity of <i>Ss</i>BcmA without significant alteration of the substrate specificity, while the conserved residues F158 as well as F210 and S211 in P2 are responsible for determining substrate selectivity. These findings facilitate the understanding of how CDPSs selectively accept hydrophobic substrates and provide additional clues for the engineering of these enzymes for synthetic biology applications.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"2969-2976"},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}