A Novel Hydrated Iron Vanadate Cathode Material for Advanced Aqueous Nickel-Ion Batteries.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-07 DOI:10.1002/smll.202404215
Hongyan Zhou, Quan Kuang, Jianguo Li, Yan Jin, Yunbo Li, Qinghua Fan, Youzhong Dong, Yanming Zhao
{"title":"A Novel Hydrated Iron Vanadate Cathode Material for Advanced Aqueous Nickel-Ion Batteries.","authors":"Hongyan Zhou, Quan Kuang, Jianguo Li, Yan Jin, Yunbo Li, Qinghua Fan, Youzhong Dong, Yanming Zhao","doi":"10.1002/smll.202404215","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous nickel-ion batteries (ANIBs) as an emerging energy storage device attracted much attention owing to their multielectron redox reaction and dendrite-free Ni anode, yet their development is hindered by the divalent properties of Ni<sup>2+</sup> and the lack of suitable cathode materials. Herein, a hydrated iron vanadate (Fe<sub>2</sub>V<sub>3</sub>O<sub>10.5</sub>∙1.5H<sub>2</sub>O, FOH) with a preferred orientation along the (200) plane is innovatively proposed and used as cathode material for ANIBs. The FOH cathode exhibits a remarkable capacity of 129.3 mAh g<sup>-1</sup> at 50 mA g<sup>-1</sup> and a super-high capacity retention of 95% at 500 mA g<sup>-1</sup> after 700 cycles. The desirable Ni<sup>2+</sup> storage capacity of FOH can be attributed to the preferentially oriented and tunnel structures, which offer abundant reaction active planes and a broad Ni<sup>2+</sup> diffusion path, the abundant vacancies and high specific surface area further increase ion storage sites and accelerate ion diffusion in the FOH lattice. Furthermore, the Ni<sup>2+</sup> storage mechanism and structural evolution in the FOH cathode are explored through ex situ XRD, ex situ Raman, ex situ XPS and other ex situ characteristics. This work opens a new way for designing novel cathode materials to promote the development of ANIBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404215","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous nickel-ion batteries (ANIBs) as an emerging energy storage device attracted much attention owing to their multielectron redox reaction and dendrite-free Ni anode, yet their development is hindered by the divalent properties of Ni2+ and the lack of suitable cathode materials. Herein, a hydrated iron vanadate (Fe2V3O10.5∙1.5H2O, FOH) with a preferred orientation along the (200) plane is innovatively proposed and used as cathode material for ANIBs. The FOH cathode exhibits a remarkable capacity of 129.3 mAh g-1 at 50 mA g-1 and a super-high capacity retention of 95% at 500 mA g-1 after 700 cycles. The desirable Ni2+ storage capacity of FOH can be attributed to the preferentially oriented and tunnel structures, which offer abundant reaction active planes and a broad Ni2+ diffusion path, the abundant vacancies and high specific surface area further increase ion storage sites and accelerate ion diffusion in the FOH lattice. Furthermore, the Ni2+ storage mechanism and structural evolution in the FOH cathode are explored through ex situ XRD, ex situ Raman, ex situ XPS and other ex situ characteristics. This work opens a new way for designing novel cathode materials to promote the development of ANIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于先进水性镍-离子电池的新型水合钒酸铁阴极材料。
水性镍离子电池(ANIBs)作为一种新兴的储能装置,因其多电子氧化还原反应和无枝晶镍阳极而备受关注,但其发展却因镍2+的二价特性和缺乏合适的阴极材料而受阻。本文创新性地提出了一种沿(200)面优先取向的水合钒酸铁(Fe2V3O10.5∙1.5H2O,FOH),并将其用作 ANIB 的阴极材料。FOH 阴极在 50 mA g-1 的条件下显示出 129.3 mAh g-1 的惊人容量,在 500 mA g-1 的条件下,经过 700 次循环后,容量保持率高达 95%。FOH 理想的 Ni2+ 储存能力得益于其优先取向和隧道结构,这种结构提供了丰富的反应活性平面和宽广的 Ni2+ 扩散路径,丰富的空位和高比表面积进一步增加了离子储存位点,并加速了 FOH 晶格中的离子扩散。此外,通过原位 XRD、原位拉曼、原位 XPS 和其他原位特征,探索了 FOH 阴极的 Ni2+ 储存机制和结构演化。这项工作为设计新型阴极材料以促进 ANIBs 的发展开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1