{"title":"Bt corn and cotton planting may benefit peanut growers by reducing aflatoxin risk","authors":"Jina Yu, David A. Hennessy, Felicia Wu","doi":"10.1111/pbi.14425","DOIUrl":null,"url":null,"abstract":"<p>Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit–cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop “halo effect.”</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3028-3036"},"PeriodicalIF":10.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14425","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pbi.14425","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit–cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop “halo effect.”
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.