A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori.

IF 40.8 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Signal Transduction and Targeted Therapy Pub Date : 2024-07-08 DOI:10.1038/s41392-024-01895-0
Xixi Guo, Xiaosa Zhao, Xi Lu, Liping Zhao, Qingxuan Zeng, Fenbei Chen, Zhimeng Zhang, Mengyi Xu, Shijiao Feng, Tianyun Fan, Wei Wei, Xin Zhang, Jing Pang, Xuefu You, Danqing Song, Yanxiang Wang, Jiandong Jiang
{"title":"A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori.","authors":"Xixi Guo, Xiaosa Zhao, Xi Lu, Liping Zhao, Qingxuan Zeng, Fenbei Chen, Zhimeng Zhang, Mengyi Xu, Shijiao Feng, Tianyun Fan, Wei Wei, Xin Zhang, Jing Pang, Xuefu You, Danqing Song, Yanxiang Wang, Jiandong Jiang","doi":"10.1038/s41392-024-01895-0","DOIUrl":null,"url":null,"abstract":"<p><p>Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 μg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"9 1","pages":"183"},"PeriodicalIF":40.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-01895-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 μg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习驱动的小檗碱衍生物作为新型抗菌剂对抗耐多药幽门螺旋杆菌的发现。
幽门螺杆菌(Helicobacter pylori,H. pylori)是目前公认的与胃肿瘤发生相关的主要致癌病原体,其高发性和耐药性使其难以解决。基于图神经网络的深度学习模型采用了13638个分子的不同训练集进行预训练和微调,有助于预测和探索针对幽门螺杆菌的新型分子。预测结果表明,含有 3,13-二取代烯的新型小檗碱衍生物 8 对所有测试的药物敏感和耐药幽门螺杆菌菌株均有疗效,最低抑制浓度(MICs)为 0.25-0.5 μg/mL。药代动力学研究表明,8 号药物的胃保留率非常理想,服药后 24 小时的胃内浓度明显高于其 MIC 值。口服 8 和奥美拉唑(OPZ)与 OPZ + 阿莫西林(AMX)+ 克拉霉素(CLA)三联疗法相比,可减少胃内细菌(减少 2.2 个菌落),且对肠道菌群无明显干扰。OPZ、AMX、CLA 和 8 的组合可进一步减少细菌量(减少 2.8 个菌落)。更重要的是,8 的单一疗法与三联疗法(OPZ + AMX + CLA)和四联疗法(OPZ + AMX + CLA + 柠檬酸铋)组的根除效果相当。通过使用化学蛋白质组学技术,确定并验证了在外层膜蛋白(OMP)运输和组装中发挥重要作用的 SecA 和 BamD 是 8 的直接靶标。总之,通过靶向相对保守的外膜蛋白转运和组装系统,8 有可能被开发成一种新型的抗幽门螺杆菌候选药物,尤其是用于根除耐药菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Transduction and Targeted Therapy
Signal Transduction and Targeted Therapy Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
44.50
自引率
1.50%
发文量
384
审稿时长
5 weeks
期刊介绍: Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy. Scope: The journal covers research on major human diseases, including, but not limited to: Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.
期刊最新文献
A comprehensive proteomic analysis of umbilical cord blood supports COVID-19 vaccination before pregnancy Next-generation mpox vaccines: efficacy of mRNA-1769 compared to modified vaccinia virus Ankara in non-human primates Intranasal delivery of a subunit protein vaccine provides protective immunity against JN.1 and XBB-lineage variants Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Identifying genetic targets in clinical subtypes of Parkinson's disease for optimizing pharmacological treatment strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1