Pub Date : 2025-03-21DOI: 10.1038/s41392-025-02189-9
Felix C. E. Vogel, Almut Schulze
{"title":"An unexpected player in organ tropism: aspartate functions as signalling molecule to drive lung metastasis","authors":"Felix C. E. Vogel, Almut Schulze","doi":"10.1038/s41392-025-02189-9","DOIUrl":"https://doi.org/10.1038/s41392-025-02189-9","url":null,"abstract":"","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"16 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1038/s41392-025-02180-4
Niklas Gremke, Isabelle Besong, Alina Stroh, Luise von Wichert, Marie Witt, Sabrina Elmshäuser, Michael Wanzel, Martin F. Fromm, R. Verena Taudte, Sabine Schmatloch, Thomas Karn, Mattea Reinisch, Nader Hirmas, Sibylle Loibl, Thomas Wündisch, Anne-Sophie Litmeyer, Paul Jank, Carsten Denkert, Sebastian Griewing, Uwe Wagner, Thorsten Stiewe
Activating PIK3CA mutations, present in up to 40% of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (Her2−) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR+, Her2−, and PIK3CA-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1T37/46 phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1T37/46 phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.
{"title":"Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs","authors":"Niklas Gremke, Isabelle Besong, Alina Stroh, Luise von Wichert, Marie Witt, Sabrina Elmshäuser, Michael Wanzel, Martin F. Fromm, R. Verena Taudte, Sabine Schmatloch, Thomas Karn, Mattea Reinisch, Nader Hirmas, Sibylle Loibl, Thomas Wündisch, Anne-Sophie Litmeyer, Paul Jank, Carsten Denkert, Sebastian Griewing, Uwe Wagner, Thorsten Stiewe","doi":"10.1038/s41392-025-02180-4","DOIUrl":"https://doi.org/10.1038/s41392-025-02180-4","url":null,"abstract":"<p>Activating <i>PIK3CA</i> mutations, present in up to 40% of hormone receptor-positive (HR<sup>+</sup>), human epidermal growth factor receptor 2-negative (Her2<sup>−</sup>) breast cancer (BC) patients, can be effectively targeted with the alpha isoform-specific PI3K inhibitor Alpelisib. This treatment significantly improves outcomes for HR<sup>+</sup>, Her2<sup>−</sup>, and <i>PIK3CA</i>-mutated metastatic BC patients. However, acquired resistance, often due to aberrant activation of the mTOR complex 1 (mTORC1) pathway, remains a significant clinical challenge. Our study, using in vitro and orthotopic xenograft mouse models, demonstrates that constitutively active mTORC1 signaling renders PI3K inhibitor-resistant BC exquisitely sensitive to various drugs targeting cancer metabolism. Mechanistically, mTORC1 suppresses the induction of autophagy during metabolic perturbation, leading to energy stress, a critical depletion of aspartate, and ultimately cell death. Supporting this mechanism, BC cells with CRISPR/Cas9-engineered knockouts of canonical autophagy genes showed similar vulnerability to metabolically active drugs. In BC patients, high mTORC1 activity, indicated by 4E-BP1<sup>T37/46</sup> phosphorylation, correlated with p62 accumulation, a sign of impaired autophagy. Together, these markers predicted poor overall survival in multiple BC subgroups. Our findings reveal that aberrant mTORC1 signaling, a common cause of PI3K inhibitor resistance in BC, creates a druggable metabolic vulnerability by suppressing autophagy. Additionally, the combination of 4E-BP1<sup>T37/46</sup> phosphorylation and p62 accumulation serves as a biomarker for poor overall survival, suggesting their potential utility in identifying BC patients who may benefit from metabolic therapies.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"37 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1038/s41392-025-02176-0
Meike Vogler, Yannick Braun, Victoria M. Smith, Mike-Andrew Westhoff, Raquel S. Pereira, Nadja M. Pieper, Marius Anders, Manon Callens, Tim Vervliet, Maha Abbas, Salvador Macip, Ralf Schmid, Geert Bultynck, Martin JS Dyer
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
{"title":"The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy","authors":"Meike Vogler, Yannick Braun, Victoria M. Smith, Mike-Andrew Westhoff, Raquel S. Pereira, Nadja M. Pieper, Marius Anders, Manon Callens, Tim Vervliet, Maha Abbas, Salvador Macip, Ralf Schmid, Geert Bultynck, Martin JS Dyer","doi":"10.1038/s41392-025-02176-0","DOIUrl":"https://doi.org/10.1038/s41392-025-02176-0","url":null,"abstract":"<p>The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-X<sub>L</sub> and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-X<sub>L</sub> or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-X<sub>L</sub> and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-X<sub>L</sub> or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"7 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1038/s41392-025-02171-5
Ying Liu, Yongshuo Liu, Xuran Niu, Ang Chen, Yizhou Li, Ying Yu, Binrui Mo, Zhiheng Liu, Tao Xu, Jie Cheng, Zeguang Wu, Wensheng Wei
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
{"title":"Massively parallel interrogation of human functional variants modulating cancer immunosurveillance","authors":"Ying Liu, Yongshuo Liu, Xuran Niu, Ang Chen, Yizhou Li, Ying Yu, Binrui Mo, Zhiheng Liu, Tao Xu, Jie Cheng, Zeguang Wu, Wensheng Wei","doi":"10.1038/s41392-025-02171-5","DOIUrl":"https://doi.org/10.1038/s41392-025-02171-5","url":null,"abstract":"<p>Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"9 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanoparticle-based drug delivery system remains a significant challenge in the current treatment of solid tumors, primarily due to their limited penetration capabilities. Herein, we successfully engineer photodynamic gel-bombs (DCM@OPR) capable of penetrating deeply into tumor tissues utilizing the photodynamic-triggered explosive energy and receptor-mediated transcytosis, significantly enhancing the therapeutic efficacy of breast cancer. The photodynamic gel-bombs were fabricated by loading powerful components of chlorin e6 and MnO2 nanoparticles, as well as Doxorubicin, into a crosslinked Ca2+-gel. Upon exposure to laser irradiation, the obtained photodynamic gel-bombs are capable of generating explosive energy, resulting in their fragmentation into numerous nanofragments. The photodynamic-triggered explosive energy subsequently drives these nanofragments to deeply penetrate into tumor tissues through gap leakage among tumor cells. In addition, the photodynamic-triggered explosive energy also promotes the escape of those therapeutic components (including chlorin e6, MnO2 nanoparticles, and doxorubicin) and nanofragments from lysosomes. In the subsequent stages, these nanofragments also exhibit excellent transcytosis capacity, facilitating deep penetration into tumor tissues. As expected, the enhanced penetration and accumulation of therapeutic components into tumor tissues can be achieved, significantly enhancing the anti-proliferation capacity against breast cancer.
{"title":"Photodynamic gel-bombs enhance tumor penetration and downstream synergistic therapies","authors":"Xiaole Bai, Fanliang Meng, Xuejiao Wang, Linyun He, Chao Fan, Liangjie Tian, Yangning Zhang, Jiahao Pan, Qun Wu, Xiangrong Hao, Ying Wang, Bo-Feng Zhu, Jun-Bing Fan, Bin Cong","doi":"10.1038/s41392-025-02186-y","DOIUrl":"https://doi.org/10.1038/s41392-025-02186-y","url":null,"abstract":"<p>Nanoparticle-based drug delivery system remains a significant challenge in the current treatment of solid tumors, primarily due to their limited penetration capabilities. Herein, we successfully engineer photodynamic gel-bombs (DCM@OPR) capable of penetrating deeply into tumor tissues utilizing the photodynamic-triggered explosive energy and receptor-mediated transcytosis, significantly enhancing the therapeutic efficacy of breast cancer. The photodynamic gel-bombs were fabricated by loading powerful components of chlorin e6 and MnO<sub>2</sub> nanoparticles, as well as Doxorubicin, into a crosslinked Ca<sup>2+</sup>-gel. Upon exposure to laser irradiation, the obtained photodynamic gel-bombs are capable of generating explosive energy, resulting in their fragmentation into numerous nanofragments. The photodynamic-triggered explosive energy subsequently drives these nanofragments to deeply penetrate into tumor tissues through gap leakage among tumor cells. In addition, the photodynamic-triggered explosive energy also promotes the escape of those therapeutic components (including chlorin e6, MnO<sub>2</sub> nanoparticles, and doxorubicin) and nanofragments from lysosomes. In the subsequent stages, these nanofragments also exhibit excellent transcytosis capacity, facilitating deep penetration into tumor tissues. As expected, the enhanced penetration and accumulation of therapeutic components into tumor tissues can be achieved, significantly enhancing the anti-proliferation capacity against breast cancer.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"16 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To evaluate the efficacy and safety of KN026, a novel bispecific HER2 (ECD2 and ECD4) antibody, plus KN046, a PD-L1, and CTLA4 bispecific antibody, in patients with advanced HER2-positive solid tumors. We conducted two sequentially designed phase Ib and II studies with similar target populations and evaluation schedules. The primary endpoints included safety, maximum tolerated dose (MTD), the recommended phase II dose (RP2D) for the phase Ib study, and the objective response rate (ORR) and duration of response (DoR) for the phase II study. Hereby, we solely report the results from 113 nonbreast cancer patients. In phase Ib, MTD was not reached. Dose 3 was confirmed to be acceptable for the phase II study. An objective response has been exclusively observed in HER2-positive patients. Any grade treatment-related adverse events (TRAEs) were reported in 108 (95.6%) patients. The most common TRAEs were infusion reactions (38.9%), anemia (37.2%), elevated AST (31.0%), and diarrhea (30.1%). Among the 108 patients evaluated for efficacy, the overall ORR was 55.6% (95%CI, 45.7%, 65.1%). In the HER2-positive GC subgroup, 38 patients received this regimen as the 1st-line treatment and 30 patients achieved an objective response, with an ORR of 78.9% (95%CI, 62.7%, 90.4%). Among 27 pretreated patients, the ORR was 44.4% (95%CI, 25.5%, 64.7%). In the other HER2-positive solid tumor subgroup (n = 34), the ORR was 52.9% (95%CI 35.1%,70.2%). Thus, KN026 plus KN04 exhibits promising efficacy and acceptable safety profiles in HER2-positive nonbreast cancer, as does the 1st-line treatment for GC.
{"title":"Efficacy and safety of KN026, a bispecific anti-HER2 antibody, in combination with KN046, an anti-CTLA4/PD-L1 antibody, in patients with advanced HER2-positive nonbreast cancer: a combined analysis of a phase Ib and a phase II study","authors":"Dan Liu, Jifang Gong, Jian Li, Changsong Qi, Zuoxing Niu, Bo Liu, Zhi Peng, Suxia Luo, Xicheng Wang, Yakun Wang, Rusen Zhao, Lilin Chen, Ting Deng, Zhen Li, Lei Chen, Meimei Fang, Hongwei Yang, Linzhi Lu, Yanming Zhang, Fengling Kang, Ting Xu, Xiaotian Zhang, Lin Shen","doi":"10.1038/s41392-025-02195-x","DOIUrl":"https://doi.org/10.1038/s41392-025-02195-x","url":null,"abstract":"<p>To evaluate the efficacy and safety of KN026, a novel bispecific HER2 (ECD2 and ECD4) antibody, plus KN046, a PD-L1, and CTLA4 bispecific antibody, in patients with advanced HER2-positive solid tumors. We conducted two sequentially designed phase Ib and II studies with similar target populations and evaluation schedules. The primary endpoints included safety, maximum tolerated dose (MTD), the recommended phase II dose (RP2D) for the phase Ib study, and the objective response rate (ORR) and duration of response (DoR) for the phase II study. Hereby, we solely report the results from 113 nonbreast cancer patients. In phase Ib, MTD was not reached. Dose 3 was confirmed to be acceptable for the phase II study. An objective response has been exclusively observed in HER2-positive patients. Any grade treatment-related adverse events (TRAEs) were reported in 108 (95.6%) patients. The most common TRAEs were infusion reactions (38.9%), anemia (37.2%), elevated AST (31.0%), and diarrhea (30.1%). Among the 108 patients evaluated for efficacy, the overall ORR was 55.6% (95%CI, 45.7%, 65.1%). In the HER2-positive GC subgroup, 38 patients received this regimen as the 1st-line treatment and 30 patients achieved an objective response, with an ORR of 78.9% (95%CI, 62.7%, 90.4%). Among 27 pretreated patients, the ORR was 44.4% (95%CI, 25.5%, 64.7%). In the other HER2-positive solid tumor subgroup (n = 34), the ORR was 52.9% (95%CI 35.1%,70.2%). Thus, KN026 plus KN04 exhibits promising efficacy and acceptable safety profiles in HER2-positive nonbreast cancer, as does the 1st-line treatment for GC.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"12 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1038/s41392-025-02174-2
Zhaorong Chen, Rayk Behrendt, Lennart Wild, Martin Schlee, Christian Bode
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
{"title":"Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy","authors":"Zhaorong Chen, Rayk Behrendt, Lennart Wild, Martin Schlee, Christian Bode","doi":"10.1038/s41392-025-02174-2","DOIUrl":"https://doi.org/10.1038/s41392-025-02174-2","url":null,"abstract":"<p>Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"87 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1038/s41392-025-02168-0
Xiaofeng Dai, Yuting Fan, Xing Zhao
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
{"title":"Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics","authors":"Xiaofeng Dai, Yuting Fan, Xing Zhao","doi":"10.1038/s41392-025-02168-0","DOIUrl":"https://doi.org/10.1038/s41392-025-02168-0","url":null,"abstract":"<p>Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"124 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1038/s41392-025-02190-2
Yufeng Guo, Rui Wan, Jianchun Duan, Li Yuan, Zhijie Wang, Jia Zhong, Xue Zhang, Zixiao Ma, Hua Bai, Jie Wang
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, but the therapeutic response is highly heterogeneous, which highlights the necessity for developing predictive biomarkers and overcoming ICB resistance. Cancer cell-intrinsic features, especially those that can be dynamically monitored via liquid biopsy, represent a broader scope for biomarker development. In addition, a potential mode of ICB resistance is tumor-intrinsic mechanisms leading to an immunosuppressive tumor microenvironment (TME). However, the underlying interactive network remains elusive, and the generalizable biomarkers and targeting strategies are still lacking. Here, we uncovered the potential of plasma S100 calcium-binding protein A1 (S100A1) for determining ICB efficacy via liquid biopsy of patients with lung cancer. Multiomics and functional studies have suggested that tumor-intrinsic S100A1 expression correlated with an immunologically “cold” TME and resistance to ICB in multiple syngeneic murine tumors and tissue samples from patients with lung cancer. Mechanistic investigations demonstrated that interfering with the tumor-intrinsic S100A1/ubiquitin-specific protease 7/p65/granulocyte-macrophage colony-stimulating factor (GM-CSF) modulatory axis could potentiate an inflamed TME by promoting M1-like macrophage polarization and T cell function. GM-CSF priming was sufficient to enhance the ICB response in tumors with high S100A1 expression in preclinical models. These findings define S100A1 as a potential blood-based biomarker and a novel synergistic target for cancer immunotherapy.
{"title":"Targeting tumor-intrinsic S100 calcium-binding protein A1 augments antitumor immunity and potentiates immunotherapy efficacy","authors":"Yufeng Guo, Rui Wan, Jianchun Duan, Li Yuan, Zhijie Wang, Jia Zhong, Xue Zhang, Zixiao Ma, Hua Bai, Jie Wang","doi":"10.1038/s41392-025-02190-2","DOIUrl":"https://doi.org/10.1038/s41392-025-02190-2","url":null,"abstract":"<p>Immune checkpoint blockade (ICB) has revolutionized cancer treatment, but the therapeutic response is highly heterogeneous, which highlights the necessity for developing predictive biomarkers and overcoming ICB resistance. Cancer cell-intrinsic features, especially those that can be dynamically monitored via liquid biopsy, represent a broader scope for biomarker development. In addition, a potential mode of ICB resistance is tumor-intrinsic mechanisms leading to an immunosuppressive tumor microenvironment (TME). However, the underlying interactive network remains elusive, and the generalizable biomarkers and targeting strategies are still lacking. Here, we uncovered the potential of plasma S100 calcium-binding protein A1 (S100A1) for determining ICB efficacy via liquid biopsy of patients with lung cancer. Multiomics and functional studies have suggested that tumor-intrinsic S100A1 expression correlated with an immunologically “cold” TME and resistance to ICB in multiple syngeneic murine tumors and tissue samples from patients with lung cancer. Mechanistic investigations demonstrated that interfering with the tumor-intrinsic S100A1/ubiquitin-specific protease 7/p65/granulocyte-macrophage colony-stimulating factor (GM-CSF) modulatory axis could potentiate an inflamed TME by promoting M1-like macrophage polarization and T cell function. GM-CSF priming was sufficient to enhance the ICB response in tumors with high S100A1 expression in preclinical models. These findings define S100A1 as a potential blood-based biomarker and a novel synergistic target for cancer immunotherapy.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"39 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1038/s41392-025-02173-3
Antonin Levy, Daphné Morel, Matthieu Texier, Maria E. Rodriguez-Ruiz, Lisa Bouarroudj, Fanny Bouquet, Alberto Bustillos, Clément Quevrin, Céline Clémenson, Michele Mondini, Lydia Meziani, Roger Sun, Nadia Zaghdoud, Lambros Tselikas, Tarek Assi, Matthieu Faron, Charles Honoré, Carine Ngo, Benjamin Verret, Cécile Le Péchoux, Axel Le Cesne, Florent Ginhoux, Christophe Massard, Rastilav Bahleda, Eric Deutsch
Immunoradiotherapy holds promise for improving outcomes in patients with advanced solid tumors, including in soft-tissue sarcoma (STS). However, the ideal combination of treatment modalities remains to be determined, and reliable biomarkers to predict which patients will benefit are lacking. Here, we report the results of the STS cohort of the SABR-PDL1 phase II trial that evaluated the anti-PDL1 atezolizumab combined with stereotactic body radiation therapy (SBRT) delivered concurrently with the 2nd cycle to at least one tumor site. Eligible patients received atezolizumab until progression or unmanageable toxicity, with SBRT at 45 Gy in 3 fractions). The primary endpoint was one-year progression-free survival (PFS) rate with success defined as 13 patients achieving 1-year PFS. Sixty-one heavily pretreated patients with STS (median 5 prior lines; 52% men; median age 54 years; 28% leiomyosarcoma) were enrolled across two centers (France, Spain). SBRT was delivered to 55 patients (90%), with the lung being the most commonly irradiated site (50%). After a median follow-up of 45 months, the one-year PFS rate was 8.3% [95% CI: 3.6–18.1]. Median PFS and overall survival were 2.5 and 8.6 months, respectively. Best responses included partial responses (5%) and stable disease (60%). Immune profiling revealed increased immunosuppressive tumor-associated macrophages (e.g., IL4I1, HES1) and monocyte-recruiting chemokines in non-responders. Higher monocyte/lymphocyte ratios (MonoLR) in tumor and blood correlated with progression. PD-L1 status, lymphoid infiltration, and tertiary-lymphoid structures were not predictive. Although the primary endpoint was not met, this study highlights MonoLR imbalance as a potential biomarker to identify STS patients likely to benefit from immunoradiotherapy. EudraCT No. 2015-005464-42; Clinicaltrial.gov number: NCT02992912.
{"title":"Monocyte-lineage tumor infiltration predicts immunoradiotherapy response in advanced pretreated soft-tissue sarcoma: phase 2 trial results","authors":"Antonin Levy, Daphné Morel, Matthieu Texier, Maria E. Rodriguez-Ruiz, Lisa Bouarroudj, Fanny Bouquet, Alberto Bustillos, Clément Quevrin, Céline Clémenson, Michele Mondini, Lydia Meziani, Roger Sun, Nadia Zaghdoud, Lambros Tselikas, Tarek Assi, Matthieu Faron, Charles Honoré, Carine Ngo, Benjamin Verret, Cécile Le Péchoux, Axel Le Cesne, Florent Ginhoux, Christophe Massard, Rastilav Bahleda, Eric Deutsch","doi":"10.1038/s41392-025-02173-3","DOIUrl":"https://doi.org/10.1038/s41392-025-02173-3","url":null,"abstract":"<p>Immunoradiotherapy holds promise for improving outcomes in patients with advanced solid tumors, including in soft-tissue sarcoma (STS). However, the ideal combination of treatment modalities remains to be determined, and reliable biomarkers to predict which patients will benefit are lacking. Here, we report the results of the STS cohort of the SABR-PDL1 phase II trial that evaluated the anti-PDL1 atezolizumab combined with stereotactic body radiation therapy (SBRT) delivered concurrently with the 2nd cycle to at least one tumor site. Eligible patients received atezolizumab until progression or unmanageable toxicity, with SBRT at 45 Gy in 3 fractions). The primary endpoint was one-year progression-free survival (PFS) rate with success defined as 13 patients achieving 1-year PFS. Sixty-one heavily pretreated patients with STS (median 5 prior lines; 52% men; median age 54 years; 28% leiomyosarcoma) were enrolled across two centers (France, Spain). SBRT was delivered to 55 patients (90%), with the lung being the most commonly irradiated site (50%). After a median follow-up of 45 months, the one-year PFS rate was 8.3% [95% CI: 3.6–18.1]. Median PFS and overall survival were 2.5 and 8.6 months, respectively. Best responses included partial responses (5%) and stable disease (60%). Immune profiling revealed increased immunosuppressive tumor-associated macrophages (e.g., IL4I1, HES1) and monocyte-recruiting chemokines in non-responders. Higher monocyte/lymphocyte ratios (MonoLR) in tumor and blood correlated with progression. PD-L1 status, lymphoid infiltration, and tertiary-lymphoid structures were not predictive. Although the primary endpoint was not met, this study highlights MonoLR imbalance as a potential biomarker to identify STS patients likely to benefit from immunoradiotherapy. EudraCT No. 2015-005464-42; Clinicaltrial.gov number: NCT02992912.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"16 1","pages":""},"PeriodicalIF":39.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}