Luiza Sánchez, Ana E. Cunha, Nuno Rodrigues, José Alberto Pereira, Paula Baptista
{"title":"Exogenous systemin peptide treatment in olive alters Bactrocera oleae oviposition preference","authors":"Luiza Sánchez, Ana E. Cunha, Nuno Rodrigues, José Alberto Pereira, Paula Baptista","doi":"10.1007/s10340-024-01808-8","DOIUrl":null,"url":null,"abstract":"<p>The olive fruit fly, <i>Bactrocera oleae</i> (Rossi), is a key pest of the olive crop, whose control relies mostly on the use of insecticides. Plant peptides may represent a more environmentally-friendly tool to manage olive fly, due to their recognized role to activate and/or prime plant defence responses against pests. In this work, behavioural experiments (no-choice and two-choice) and analysis of volatile compounds were carried out to evaluate the impact of the exogenous application of the peptide systemin to olive tree on olive fly infestation, and to elucidate its mode of action to prime plant defence. The treatment of olive branches with 10 nM systemin showed to confer protection against olive fly, by reducing significantly the ovipositions (up to 3.0-fold) and the number of infested fruits (up to 2.9-fold) when compared to non-treated branches. This protective effect was even detected in neighbouring non-treated branches, suggesting the ability of systemin to trigger plant-to-plant communication. The deterrent activity of the primed olives was associated with the emission of the volatiles 2-ethyl-1-hexanol, 4-tert-butylcyclohexyl acetate and 1, 2, 3-trimethyl-benzene, which were negatively correlated with oviposition and fly infestation. Systemin has also showed to trigger the biosynthesis of specific volatiles (esters) in olives in response to fly attacks. Overall, the observed protection conferred by systemin against olive fly is likely due to the emission of specific volatiles that can act as a defence and/or as signalling molecules to upregulate the plant defence response. Thus, systemin represents a novel and useful tool to manage olive fruit fly.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01808-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The olive fruit fly, Bactrocera oleae (Rossi), is a key pest of the olive crop, whose control relies mostly on the use of insecticides. Plant peptides may represent a more environmentally-friendly tool to manage olive fly, due to their recognized role to activate and/or prime plant defence responses against pests. In this work, behavioural experiments (no-choice and two-choice) and analysis of volatile compounds were carried out to evaluate the impact of the exogenous application of the peptide systemin to olive tree on olive fly infestation, and to elucidate its mode of action to prime plant defence. The treatment of olive branches with 10 nM systemin showed to confer protection against olive fly, by reducing significantly the ovipositions (up to 3.0-fold) and the number of infested fruits (up to 2.9-fold) when compared to non-treated branches. This protective effect was even detected in neighbouring non-treated branches, suggesting the ability of systemin to trigger plant-to-plant communication. The deterrent activity of the primed olives was associated with the emission of the volatiles 2-ethyl-1-hexanol, 4-tert-butylcyclohexyl acetate and 1, 2, 3-trimethyl-benzene, which were negatively correlated with oviposition and fly infestation. Systemin has also showed to trigger the biosynthesis of specific volatiles (esters) in olives in response to fly attacks. Overall, the observed protection conferred by systemin against olive fly is likely due to the emission of specific volatiles that can act as a defence and/or as signalling molecules to upregulate the plant defence response. Thus, systemin represents a novel and useful tool to manage olive fruit fly.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.