Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard-Barra, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerald Ancellet, Richard Querel, Roeland Van Malderen, Daniel Zawada
{"title":"Ozone trends in homogenized Umkehr, Ozonesonde, and COH overpass records","authors":"Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard-Barra, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerald Ancellet, Richard Querel, Roeland Van Malderen, Daniel Zawada","doi":"10.5194/egusphere-2024-1821","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> This study presents an updated evaluation of stratospheric ozone profile trends at Arosa/Davos/Hohenpeißenberg, Switzerland/Germany, Observatory de Haute Provence (OHP), France, Boulder, Colorado, Mauna Loa Observatory (MLO) and Hilo, Hawaii, and Lauder, New Zealand with focus on the ozone recovery period post 2000. Trends are derived using vertical ozone profiles from NOAA’s Dobson Network via the Umkehr method (with a recent new homogenization), ozonesondes, and the NOAA COHesive SBUV/OMPS satellite-based record (COH) sampled to match geographical coordinates of the ground-based stations used in this study. Analyses of long-term changes in stratospheric ozone time series were performed using the updated version (0.8.0) of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) Independent Linear Trend (ILT) regression model. This study finds a consistency of the trends derived from the different observational records, which is a key factor to the understanding of the recovery of the ozone layer after the implementation of the Montreal Protocol and its amendments that control ozone-depleting substances production and release into the atmosphere. The Northern Hemispheric Umkehr records of Aros/Davos, OHP, and MLO all show positive trends in the mid to upper stratosphere with trends peaking at ~+2 %/decade. Although the upper stratospheric ozone trends derived from COH satellite records are more positive than those detected by the Umkehr system, the agreement is within the two sigma uncertainty. Umkehr trends in the upper stratosphere at Boulder and Lauder are positive but not statistically significant, while COH trends are larger and statistically significant (within 2 sigma). In the lower stratosphere, trends derived from Umkehr and ozonesonde records are mostly negative (except for positive ozonesonde trends at OHP), however the uncertainties are quite large. Additional dynamical proxies were investigated in the LOTUS model at five ground-based sites. The use of additional proxies did not significantly change trends, but equivalent latitude reduced the uncertainty of the Umkehr and COH trends in the upper stratosphere and at higher latitudes. In lower layers, additional predictors (tropopause pressure for all stations, two extra components of Quasi-Biennial Oscillation at MLO, Arctic Oscillation at Arosa/Davos, OHP and MLO) improve the model fit and reduce trend uncertainties as seen by Umkehr and sonde.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"365 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1821","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. This study presents an updated evaluation of stratospheric ozone profile trends at Arosa/Davos/Hohenpeißenberg, Switzerland/Germany, Observatory de Haute Provence (OHP), France, Boulder, Colorado, Mauna Loa Observatory (MLO) and Hilo, Hawaii, and Lauder, New Zealand with focus on the ozone recovery period post 2000. Trends are derived using vertical ozone profiles from NOAA’s Dobson Network via the Umkehr method (with a recent new homogenization), ozonesondes, and the NOAA COHesive SBUV/OMPS satellite-based record (COH) sampled to match geographical coordinates of the ground-based stations used in this study. Analyses of long-term changes in stratospheric ozone time series were performed using the updated version (0.8.0) of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) Independent Linear Trend (ILT) regression model. This study finds a consistency of the trends derived from the different observational records, which is a key factor to the understanding of the recovery of the ozone layer after the implementation of the Montreal Protocol and its amendments that control ozone-depleting substances production and release into the atmosphere. The Northern Hemispheric Umkehr records of Aros/Davos, OHP, and MLO all show positive trends in the mid to upper stratosphere with trends peaking at ~+2 %/decade. Although the upper stratospheric ozone trends derived from COH satellite records are more positive than those detected by the Umkehr system, the agreement is within the two sigma uncertainty. Umkehr trends in the upper stratosphere at Boulder and Lauder are positive but not statistically significant, while COH trends are larger and statistically significant (within 2 sigma). In the lower stratosphere, trends derived from Umkehr and ozonesonde records are mostly negative (except for positive ozonesonde trends at OHP), however the uncertainties are quite large. Additional dynamical proxies were investigated in the LOTUS model at five ground-based sites. The use of additional proxies did not significantly change trends, but equivalent latitude reduced the uncertainty of the Umkehr and COH trends in the upper stratosphere and at higher latitudes. In lower layers, additional predictors (tropopause pressure for all stations, two extra components of Quasi-Biennial Oscillation at MLO, Arctic Oscillation at Arosa/Davos, OHP and MLO) improve the model fit and reduce trend uncertainties as seen by Umkehr and sonde.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.