Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-07-08 DOI:10.1038/s41560-024-01565-z
Yulin Jie, Shiyang Wang, Suting Weng, Yue Liu, Ming Yang, Chao Tang, Xinpeng Li, Zhengfeng Zhang, Yuchen Zhang, Yawei Chen, Fanyang Huang, Yaolin Xu, Wanxia Li, Youzhang Guo, Zixu He, Xiaodi Ren, Yuhao Lu, Ke Yang, Saichao Cao, He Lin, Ruiguo Cao, Pengfei Yan, Tao Cheng, Xuefeng Wang, Shuhong Jiao, Dongsheng Xu
{"title":"Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes","authors":"Yulin Jie, Shiyang Wang, Suting Weng, Yue Liu, Ming Yang, Chao Tang, Xinpeng Li, Zhengfeng Zhang, Yuchen Zhang, Yawei Chen, Fanyang Huang, Yaolin Xu, Wanxia Li, Youzhang Guo, Zixu He, Xiaodi Ren, Yuhao Lu, Ke Yang, Saichao Cao, He Lin, Ruiguo Cao, Pengfei Yan, Tao Cheng, Xuefeng Wang, Shuhong Jiao, Dongsheng Xu","doi":"10.1038/s41560-024-01565-z","DOIUrl":null,"url":null,"abstract":"The development of practical lithium metal cells is plagued by their limited lifespan, primarily due to the poor interfacial stability of the electrolytes. Here we present a compact ion-pair aggregate (CIPA) electrolyte that enables high-performance Li metal pouch cells under lean electrolyte conditions. The electrolyte features a unique nanometre-scale solvation structure in which ion pairs are densely packed to form large CIPAs, in contrast to conventional electrolytes that comprise small aggregates. Notably, the CIPAs facilitate fast interfacial reduction kinetics on the Li metal anode via a collective electron-transfer process, leading to the formation of a stable interface. A 505.9 Wh kg−1 Li metal pouch cell with a high-nickel-content cathode (LiNi0.905Co0.06Mn0.035O2) exhibited a 91% energy retention after 130 cycles. This work demonstrates nanostructured electrolyte design for realizing high-performance Li metal batteries. It also showcases the importance of understanding interfacial reaction mechanisms in the design and development of electrolytes. Electrolyte design is crucial for lithium metal battery development. Here the authors report an electrolyte with a compact solvation structure on the nanometre scale that facilitates fast interfacial reaction kinetics and improves battery performance.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01565-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of practical lithium metal cells is plagued by their limited lifespan, primarily due to the poor interfacial stability of the electrolytes. Here we present a compact ion-pair aggregate (CIPA) electrolyte that enables high-performance Li metal pouch cells under lean electrolyte conditions. The electrolyte features a unique nanometre-scale solvation structure in which ion pairs are densely packed to form large CIPAs, in contrast to conventional electrolytes that comprise small aggregates. Notably, the CIPAs facilitate fast interfacial reduction kinetics on the Li metal anode via a collective electron-transfer process, leading to the formation of a stable interface. A 505.9 Wh kg−1 Li metal pouch cell with a high-nickel-content cathode (LiNi0.905Co0.06Mn0.035O2) exhibited a 91% energy retention after 130 cycles. This work demonstrates nanostructured electrolyte design for realizing high-performance Li metal batteries. It also showcases the importance of understanding interfacial reaction mechanisms in the design and development of electrolytes. Electrolyte design is crucial for lithium metal battery development. Here the authors report an electrolyte with a compact solvation structure on the nanometre scale that facilitates fast interfacial reaction kinetics and improves battery performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过紧凑型离子对聚合电解质实现长寿命 500 Wh kg-1 金属锂袋电池
由于电解质的界面稳定性差,实用锂金属电池的开发受到了使用寿命有限的困扰。在此,我们提出了一种紧凑型离子对聚合体(CIPA)电解质,可在贫电解质条件下实现高性能金属锂袋式电池。这种电解质具有独特的纳米级溶解结构,其中离子对密集排列,形成大型 CIPAs,而传统电解质则由小聚合体组成。值得注意的是,CIPAs 通过集体电子转移过程促进了锂金属阳极的快速界面还原动力学,从而形成了稳定的界面。采用高镍含量阴极(LiNi0.905Co0.06Mn0.035O2)的 505.9 Wh kg-1 锂金属袋电池在 130 个循环后显示出 91% 的能量保持率。这项工作展示了实现高性能锂金属电池的纳米结构电解质设计。它还展示了在设计和开发电解质时了解界面反应机制的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Mapping the uncharted interface MOFs, holistically Benchmarking the reproducibility of all-solid-state battery cell performance Refining Native American clean-energy opportunities Inconsistent measurement calls into question progress on electrification in sub-Saharan Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1