Performance of Effective Harmonic Oscillator Approach for the Calculations of Vibrational Transition Energies of Large Molecules

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-07-09 DOI:10.1021/acs.jpca.4c01583
Mokshi Sharma, Subrata Banik* and Tapta Kanchan Roy*, 
{"title":"Performance of Effective Harmonic Oscillator Approach for the Calculations of Vibrational Transition Energies of Large Molecules","authors":"Mokshi Sharma,&nbsp;Subrata Banik* and Tapta Kanchan Roy*,&nbsp;","doi":"10.1021/acs.jpca.4c01583","DOIUrl":null,"url":null,"abstract":"<p >The accuracy and performance of the effective harmonic oscillator approximation for the description of anharmonic vibrational structure calculations are tested for large molecular systems and compared with experimental values along with vibrational self-consistent field and second-order perturbation theories. The effective harmonic oscillator approach is an effective single-particle approximation where the variational parameters are the centroids and widths of the multidimensional Gaussian product functions posited as the vibrational wave functions. A comprehensive calculation for 849 transitions that include the fundamentals, two and three quanta overtone transitions, and several combination bands of three polyaromatic hydrocarbons and one DNA nucleobase with a total of 231 normal modes are assessed. A comparison of EHO results with the experimental values is done for the polyaromatic hydrocarbons, and a close agreement is found between the two results. It also offers anharmonic eigenstates and eigenfunctions that are nearly identical with vibrational self-consistent field theory. An extensive analysis on the resultant wave functions of the excited states is performed. The overall root-mean-square deviation (RMSD) between these two methods for 849 transitions understudy is only about 8.3 cm<sup>–1</sup>, suggesting the effective harmonic oscillator as a viable alternative for the reliable calculations of transition energies of large molecular systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c01583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy and performance of the effective harmonic oscillator approximation for the description of anharmonic vibrational structure calculations are tested for large molecular systems and compared with experimental values along with vibrational self-consistent field and second-order perturbation theories. The effective harmonic oscillator approach is an effective single-particle approximation where the variational parameters are the centroids and widths of the multidimensional Gaussian product functions posited as the vibrational wave functions. A comprehensive calculation for 849 transitions that include the fundamentals, two and three quanta overtone transitions, and several combination bands of three polyaromatic hydrocarbons and one DNA nucleobase with a total of 231 normal modes are assessed. A comparison of EHO results with the experimental values is done for the polyaromatic hydrocarbons, and a close agreement is found between the two results. It also offers anharmonic eigenstates and eigenfunctions that are nearly identical with vibrational self-consistent field theory. An extensive analysis on the resultant wave functions of the excited states is performed. The overall root-mean-square deviation (RMSD) between these two methods for 849 transitions understudy is only about 8.3 cm–1, suggesting the effective harmonic oscillator as a viable alternative for the reliable calculations of transition energies of large molecular systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算大分子振动转换能量的有效谐振子方法的性能。
针对大分子系统测试了描述非谐振动结构计算的有效谐振子近似的准确性和性能,并将其与实验值以及振动自洽场和二阶扰动理论进行了比较。有效谐振子方法是一种有效的单粒子近似方法,其变异参数是作为振动波函数的多维高斯积函数的中心点和宽度。对 849 个转换进行了综合计算,其中包括基本转换、双量子和三量子泛音转换,以及三个多芳烃和一个 DNA 核碱基的几个组合带,共 231 个正常模式。对多芳烃的 EHO 结果与实验值进行了比较,发现两者的结果非常接近。它还提供了与振动自洽场理论几乎相同的非谐波特征状态和特征函数。对激发态的结果波函数进行了广泛分析。对于所研究的 849 个跃迁,这两种方法的总体均方根偏差(RMSD)仅为 8.3 cm-1,这表明有效谐振子是可靠计算大型分子体系跃迁能量的可行替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Calculated Aqueous Reduction Potentials of Neutral and Anionic Halogen Diatomic Molecules. Electronic Structures of Small Stoichiometric ZnxOx Clusters. Room Temperature Gas Phase Equilibrium Constants of the Methanol Dimer, Trimer, and Tetramer. Secondary Brown Carbon Aerosol Resists Bleaching by Ozone under Acidic Conditions. Combining Complex Conjugation, Time-Reversal, and Spin-Flip Symmetry Projection of Coupled Cluster Wave Functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1