Capillary force-driven reverse-Tesla valve structure for microfluidic bioassays.

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2024-07-22 DOI:10.1039/d4an00601a
Cheng Nie, Hyorim Jeong, Kyung-A Hyun, Sunyoung Park, Hyo-Il Jung
{"title":"Capillary force-driven reverse-Tesla valve structure for microfluidic bioassays.","authors":"Cheng Nie, Hyorim Jeong, Kyung-A Hyun, Sunyoung Park, Hyo-Il Jung","doi":"10.1039/d4an00601a","DOIUrl":null,"url":null,"abstract":"<p><p>Biological assays involve the lysis of biological particles, enzyme reactions, and gene amplification, and require a certain amount of time for completion. Microfluidic chips are regarded as powerful devices for biological assays and <i>in vitro</i> diagnostics; however, they cannot achieve a high mixing efficiency, particularly in some time-consuming biological reactions. Herein, we introduce a microfluidic reverse-Tesla (reTesla) valve structure in which the fluid is affected by vortices and branch flow convergence, resulting in flow retardation and a high degree of mixing. The reTesla is passively operated by a microfluidic capillary force without any pumping facility. Compared with our previously developed micromixers, this innovative pumpless microfluidic chip exhibited high performance, with a mixing efficiency of more than 93%. The versatility of our reTesla chip will play a pivotal role in the study of various biological and chemical reactions.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an00601a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biological assays involve the lysis of biological particles, enzyme reactions, and gene amplification, and require a certain amount of time for completion. Microfluidic chips are regarded as powerful devices for biological assays and in vitro diagnostics; however, they cannot achieve a high mixing efficiency, particularly in some time-consuming biological reactions. Herein, we introduce a microfluidic reverse-Tesla (reTesla) valve structure in which the fluid is affected by vortices and branch flow convergence, resulting in flow retardation and a high degree of mixing. The reTesla is passively operated by a microfluidic capillary force without any pumping facility. Compared with our previously developed micromixers, this innovative pumpless microfluidic chip exhibited high performance, with a mixing efficiency of more than 93%. The versatility of our reTesla chip will play a pivotal role in the study of various biological and chemical reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微流体生物测定的毛细管力驱动反向特斯拉阀结构。
生物检测涉及生物颗粒的裂解、酶反应和基因扩增,需要一定的时间才能完成。微流控芯片被认为是生物检测和体外诊断的强大设备,但它无法实现较高的混合效率,尤其是在一些耗时较长的生物反应中。在这里,我们引入了一种微流体反向特斯拉(reTesla)阀门结构,在这种结构中,流体受到涡流和支流汇聚的影响,从而产生流动阻滞和高度混合。reTesla 由微流控毛细管力被动操作,无需任何泵送设施。与我们之前开发的微混合器相比,这种创新的无泵微流体芯片表现出了高性能,混合效率超过 93%。我们的 reTesla 芯片的多功能性将在各种生物和化学反应研究中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: The home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences
期刊最新文献
Photo-triggered AuAg@g-C3N4 composite nanoplatform for multimodal broad-spectrum antibacterial therapy Rapid Electrochemical Detection of L-lactate in Baijiu Affecting Serotonin and Dopamine Secretion in Mice Noble metal-enhanced Au@CuO heterostructure with multienzyme-mimicking activities for colorimetric detection of tannic acid Construction of DNA walker nanomachine aptasensor for the simultaneous detection of dual-cancer biomarkers 1,4-Dihydropyridine-based FA1 site-specific fluorescent probes for the selective detection and quantification of HSA levels in biofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1