A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2024-07-08 DOI:10.1007/s10439-024-03580-3
Aishwarya Varpe, Marwana Sayed, Nikhil S Mane
{"title":"A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone.","authors":"Aishwarya Varpe, Marwana Sayed, Nikhil S Mane","doi":"10.1007/s10439-024-03580-3","DOIUrl":null,"url":null,"abstract":"<p><p>The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03580-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于人体器官三维生物打印的进展与挑战的全面文献综述:耳、皮肤和骨骼。
三维生物打印技术正在再生医学领域迅速崛起,为解决器官短缺问题提供了巨大潜力。尽管还处于早期阶段,但它具有准确复制组织结构的潜力,为重建手术提供了新的潜在解决方案。本综述探讨了三维生物打印在再生医学、制药和食品工业中的各种应用,特别侧重于耳、皮肤和骨组织,因为它们在该领域具有独特的挑战和影响。耳部重建中的软骨和骨支架制造已取得重大进展,但功能成熟方面的挑战依然存在。最近的进展突显了患者特异性耳替代物的潜力,强调了广泛临床试验的必要性。在皮肤再生方面,三维生物打印技术解决了现有模型的局限性,为改善伤口愈合和建立逼真的皮肤模型提供了机会。虽然挑战依然存在,但生物材料和原位生物打印技术的进步带来了希望。在骨再生方面,三维生物打印为缺损提供了个性化的解决方案,但支架设计的完善以及解决监管和伦理方面的问题至关重要。三维生物打印在医学领域的变革潜力有望重新定义治疗方法,提供个性化治疗和功能性组织。跨学科合作对于充分发挥三维生物打印的能力至关重要。本综述详细分析了耳部、皮肤和骨组织再生三维生物打印的当前方法、挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
A Comparative Analysis of Alpha and Beta Therapy in Prostate Cancer Using a 3D Image-Based Spatiotemporal Model. Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Clinical Validation of Non-invasive Simulation-Based Determination of Vascular Impedance, Wave Intensity, and Hydraulic Work in Patients Undergoing Transcatheter Aortic Valve Replacement. Correction: The Effect of Low-Dose CT Protocols on Shoulder Model-Based Tracking accuracy Using Biplane Videoradiography. Thoracic Responses and Injuries of Male Post-Mortem Human Subjects in a Homogeneous Rear-Facing Seat During High-Speed Frontal Impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1