Maryam Al Qaydi, Nitul S Rajput, Michael Lejeune, Abdellatif Bouchalkha, Mimoun El Marssi, Steevy Cordette, Chaouki Kasmi, Mustapha Jouiad
{"title":"Intermixing of MoS<sub>2</sub> and WS<sub>2</sub> photocatalysts toward methylene blue photodegradation.","authors":"Maryam Al Qaydi, Nitul S Rajput, Michael Lejeune, Abdellatif Bouchalkha, Mimoun El Marssi, Steevy Cordette, Chaouki Kasmi, Mustapha Jouiad","doi":"10.3762/bjnano.15.68","DOIUrl":null,"url":null,"abstract":"<p><p>Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS<sub>2</sub> and WS<sub>2</sub> prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS<sub>2</sub> exhibited the highest PD efficiency of 67.6% and achieved an impressive PD rate constant of 6.1 × 10<sup>-3</sup> min<sup>-1</sup>. Conversely, MoS<sub>2</sub> displayed a somewhat lower PD performance of 43.5% but demonstrated remarkable stability. The intriguing result of this study relies on the synergetic effect observed when both MoS<sub>2</sub> and WS<sub>2</sub> are combined in a ratio of 20% of MoS<sub>2</sub> and 80% of WS<sub>2</sub>. This precise blend resulted in an optimized PD efficiency and exceptional stability reaching 97% upon several cycles. This finding underscores the advantageous outcomes of intermixing WS<sub>2</sub> and MoS<sub>2</sub>, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"817-829"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.68","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS2 and WS2 prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS2 exhibited the highest PD efficiency of 67.6% and achieved an impressive PD rate constant of 6.1 × 10-3 min-1. Conversely, MoS2 displayed a somewhat lower PD performance of 43.5% but demonstrated remarkable stability. The intriguing result of this study relies on the synergetic effect observed when both MoS2 and WS2 are combined in a ratio of 20% of MoS2 and 80% of WS2. This precise blend resulted in an optimized PD efficiency and exceptional stability reaching 97% upon several cycles. This finding underscores the advantageous outcomes of intermixing WS2 and MoS2, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.