An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects.

IF 5.8 1区 农林科学 Q1 BIOLOGY Current opinion in insect science Pub Date : 2024-07-06 DOI:10.1016/j.cois.2024.101231
Dova Brenman-Suttner, Amro Zayed
{"title":"An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects.","authors":"Dova Brenman-Suttner, Amro Zayed","doi":"10.1016/j.cois.2024.101231","DOIUrl":null,"url":null,"abstract":"<p><p>While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype-phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.</p>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.cois.2024.101231","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype-phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于研究昆虫群居性的遗传、进化和分子基础的综合基因组工具包。
过去二十年来,社会性昆虫的基因组资源大幅增加,但我们仍远未了解群居性的遗传和分子基础。在此,我们简要回顾了三项科学进展,如果将它们结合起来,将极大地促进我们对易群居性状的遗传学和进化的了解。群体基因组学为量化编码和调控序列的自然选择强度提供了一种自然的方法,突出了在电子社会性进化或维持过程中经历适应性进化的基因。全基因组关联研究(GWAS)可用于描述蚁群性状背后复杂的遗传结构,并确定候选的因果变异。同时,CRISPR/Cas9 可以精确操纵基因功能,从而验证基因型与表型之间的关联,并研究有趣性状背后的分子生物学。虽然每种方法都有自己的优缺点(我们将在本文中讨论这些优缺点),但我们认为,它们的结合最终将帮助我们更好地理解电子社会行为的遗传学和进化。具体来说,通过对这三种不同方法进行三角测量,研究人员可以直接确定和研究与关键表型有因果关系的基因座,并有证据表明在与昆虫群居性进化和维持相关的时间尺度上存在正选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in insect science
Current opinion in insect science BIOLOGYECOLOGYENTOMOLOGY-ECOLOGY
CiteScore
10.40
自引率
1.90%
发文量
113
期刊介绍: Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following 11 areas are covered by Current Opinion in Insect Science. -Ecology -Insect genomics -Global Change Biology -Molecular Physiology (Including Immunity) -Pests and Resistance -Parasites, Parasitoids and Biological Control -Behavioural Ecology -Development and Regulation -Social Insects -Neuroscience -Vectors and Medical and Veterinary Entomology There is also a section that changes every year to reflect hot topics in the field. Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.
期刊最新文献
Host-location by arthropod vectors: Are microorganisms in control? Harmonizing Control: Understanding the Complex Impact of Pesticides on Parasitoid Wasps for Enhanced Pest Management. The dynamics of Aedes aegypti mating behavior. Serotonergic modulation of olfactory processing in locust antennae. Agonist-dependent action of the juvenile hormone receptor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1