Extracellular vesicle isolation and counting system (EVics) based on simultaneous tandem tangential flow filtration and large field-of-view light scattering

IF 15.5 1区 医学 Q1 CELL BIOLOGY Journal of Extracellular Vesicles Pub Date : 2024-07-08 DOI:10.1002/jev2.12479
Ju-Hyun Bae, Chan-Hyeong Lee, Dokyung Jung, Kyungmoo Yea, Byoung-Joon Song, Hakho Lee, Moon-Chang Baek
{"title":"Extracellular vesicle isolation and counting system (EVics) based on simultaneous tandem tangential flow filtration and large field-of-view light scattering","authors":"Ju-Hyun Bae,&nbsp;Chan-Hyeong Lee,&nbsp;Dokyung Jung,&nbsp;Kyungmoo Yea,&nbsp;Byoung-Joon Song,&nbsp;Hakho Lee,&nbsp;Moon-Chang Baek","doi":"10.1002/jev2.12479","DOIUrl":null,"url":null,"abstract":"<p>Although the isolation and counting of small extracellular vesicles (sEVs) are essential steps in sEV research, an integrated method with scalability and efficiency has not been developed. Here, we present a scalable and ready-to-use extracellular vesicle (EV) isolation and counting system (EVics) that simultaneously allows isolation and counting in one system. This novel system consists of (i) EVi, a simultaneous tandem tangential flow filtration (TFF)-based EV isolation component by applying two different pore-size TFF filters, and (ii) EVc, an EV counting component using light scattering that captures a large field-of-view (FOV). EVi efficiently isolated 50–200 nm-size sEVs from 15 µL to 2 L samples, outperforming the current state-of-the-art devices in purity and speed. EVc with a large FOV efficiently counted isolated sEVs. EVics enabled early observations of sEV secretion in various cell lines and reduced the cost of evaluating the inhibitory effect of sEV inhibitors by 20-fold. Using EVics, sEVs concentrations and sEV PD-L1 were monitored in a 23-day cancer mouse model, and 160 clinical samples were prepared and successfully applied to diagnosis. These results demonstrate that EVics could become an innovative system for novel findings in basic and applied studies in sEV research.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":15.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12479","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the isolation and counting of small extracellular vesicles (sEVs) are essential steps in sEV research, an integrated method with scalability and efficiency has not been developed. Here, we present a scalable and ready-to-use extracellular vesicle (EV) isolation and counting system (EVics) that simultaneously allows isolation and counting in one system. This novel system consists of (i) EVi, a simultaneous tandem tangential flow filtration (TFF)-based EV isolation component by applying two different pore-size TFF filters, and (ii) EVc, an EV counting component using light scattering that captures a large field-of-view (FOV). EVi efficiently isolated 50–200 nm-size sEVs from 15 µL to 2 L samples, outperforming the current state-of-the-art devices in purity and speed. EVc with a large FOV efficiently counted isolated sEVs. EVics enabled early observations of sEV secretion in various cell lines and reduced the cost of evaluating the inhibitory effect of sEV inhibitors by 20-fold. Using EVics, sEVs concentrations and sEV PD-L1 were monitored in a 23-day cancer mouse model, and 160 clinical samples were prepared and successfully applied to diagnosis. These results demonstrate that EVics could become an innovative system for novel findings in basic and applied studies in sEV research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于同步串联切向流过滤和大视场光散射的细胞外囊泡分离和计数系统(EVics)。
尽管小细胞外囊泡(sEVs)的分离和计数是 sEV 研究的重要步骤,但目前尚未开发出一种具有可扩展性和高效性的综合方法。在这里,我们提出了一种可扩展且随时可用的细胞外囊泡 (EV) 分离和计数系统(EVics),可在一个系统中同时进行分离和计数。这种新型系统包括:(i) EVi,基于切向流过滤(TFF)的同步串联EV分离组件,采用两种不同孔径的TFF过滤器;(ii) EVc,利用光散射捕捉大视场(FOV)的EV计数组件。EVi 能从 15 µL 至 2 L 样品中有效分离出 50-200 nm 大小的 sEV,在纯度和速度上都优于目前最先进的设备。具有大视场角的 EVc 可对分离出的 sEV 进行有效计数。通过 EVics,可以尽早观察到各种细胞系的 sEV 分泌情况,并将评估 sEV 抑制剂抑制效果的成本降低了 20 倍。利用 EVics,在 23 天的癌症小鼠模型中监测了 sEVs 浓度和 sEV PD-L1,制备了 160 份临床样本并成功应用于诊断。这些结果表明,EVics 可以成为一种创新系统,为 sEV 研究的基础和应用研究提供新的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
期刊最新文献
A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer Correction to MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity A novel multiplexed immunoassay for surface-exposed proteins in plasma extracellular vesicles Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1