Influence of passive arm-support exoskeleton on static postural balance in load-holding tasks: effects of supportive force, weight and load location.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-09 DOI:10.1080/00140139.2024.2376334
Erik Jonathan, Shuping Xiong
{"title":"Influence of passive arm-support exoskeleton on static postural balance in load-holding tasks: effects of supportive force, weight and load location.","authors":"Erik Jonathan, Shuping Xiong","doi":"10.1080/00140139.2024.2376334","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically investigated the influence of a passive arm-support exoskeleton (ASE) on static postural balance in load-holding tasks under different weight conditions and load locations, and the relationship between such influence and the exoskeleton's supportive force profile. Using a 3 (exoskeleton interventions) ×3 (weight conditions) ×3 (load locations) within-subjects design, the research found that wearing ASE with supportive force significantly reduced postural sway by 17.84% and 15.19% across all conditions compared to without wearing the exoskeleton and with deactivated support, respectively. These improvements were consistent with subjective assessments. The stability benefits varied with the weight and load location, reflecting the exoskeleton's supportive force profile. Overall, the study suggests that the supportive force from the ASE can enhance static postural balance, with effectiveness dependent on weight conditions and load locations. This highlights the potential of passive ASEs for improving stability and reducing fall risks in work environments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2376334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigated the influence of a passive arm-support exoskeleton (ASE) on static postural balance in load-holding tasks under different weight conditions and load locations, and the relationship between such influence and the exoskeleton's supportive force profile. Using a 3 (exoskeleton interventions) ×3 (weight conditions) ×3 (load locations) within-subjects design, the research found that wearing ASE with supportive force significantly reduced postural sway by 17.84% and 15.19% across all conditions compared to without wearing the exoskeleton and with deactivated support, respectively. These improvements were consistent with subjective assessments. The stability benefits varied with the weight and load location, reflecting the exoskeleton's supportive force profile. Overall, the study suggests that the supportive force from the ASE can enhance static postural balance, with effectiveness dependent on weight conditions and load locations. This highlights the potential of passive ASEs for improving stability and reducing fall risks in work environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被动手臂支撑外骨骼对负重任务中静态姿势平衡的影响:支撑力、重量和负重位置的影响。
本研究系统地调查了在不同重量条件和负载位置下,被动手臂支撑外骨骼(ASE)对负重任务中静态姿势平衡的影响,以及这种影响与外骨骼支撑力曲线之间的关系。研究采用 3(外骨骼干预)×3(重量条件)×3(负载位置)的受试者内设计,发现在所有条件下,与未穿戴外骨骼和停用支撑相比,穿戴带有支撑力的 ASE 可显著减少姿势摇摆,分别减少了 17.84% 和 15.19%。这些改善与主观评估结果一致。稳定性优势随重量和负载位置的不同而变化,这反映了外骨骼的支撑力曲线。总之,研究表明,外骨骼的支撑力可以增强静态姿势平衡,其有效性取决于体重条件和负载位置。这凸显了被动式外骨骼在提高稳定性和降低工作环境中跌倒风险方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1