{"title":"Identification of ETH receptor and its possible roles in the mud crab Scylla paramamosain","authors":"","doi":"10.1016/j.cbpa.2024.111692","DOIUrl":null,"url":null,"abstract":"<div><p>Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab <em>Scylla paramamosain</em> and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (<em>Sp</em>ETHR) was identified in <em>S. paramamosain</em>, exhibiting a dose-dependent activation by <em>Sp</em>ETH with an EC<sub>50</sub> value of 75.18 nM. Tissue distribution analysis revealed <em>SpETH</em> was in the cerebral ganglion and thoracic ganglion, while <em>SpETHR</em> was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. <em>In vitro</em> experiments demonstrated that synthetic <em>Sp</em>ETH (at a concentration of 10<sup>−8</sup> M) significantly increased the expression of <em>SpVgR</em> in the ovary and induced ecdysone biosynthesis in the Y-organ. <em>In vivo</em> experiments showed a significant upregulation of <em>SpEcR</em> in the ovary and <em>Disembodied</em> and <em>Shadow</em> in the Y-organ after 12 h of <em>Sp</em>ETH injection. Furthermore, a 16-day administration of <em>Sp</em>ETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of <em>S. paramamosain.</em> In conclusion, our findings suggest that <em>Sp</em>ETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"297 ","pages":"Article 111692"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10−8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.