Carotid Vessel Wall Segmentation Through Domain Aligner, Topological Learning, and Segment Anything Model for Sparse Annotation in MR Images.

Xibao Li, Xi Ouyang, Jiadong Zhang, Zhongxiang Ding, Yuyao Zhang, Zhong Xue, Feng Shi, Dinggang Shen
{"title":"Carotid Vessel Wall Segmentation Through Domain Aligner, Topological Learning, and Segment Anything Model for Sparse Annotation in MR Images.","authors":"Xibao Li, Xi Ouyang, Jiadong Zhang, Zhongxiang Ding, Yuyao Zhang, Zhong Xue, Feng Shi, Dinggang Shen","doi":"10.1109/TMI.2024.3424884","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image analysis poses significant challenges due to limited availability of clinical data, which is crucial for training accurate models. This limitation is further compounded by the specialized and labor-intensive nature of the data annotation process. For example, despite the popularity of computed tomography angiography (CTA) in diagnosing atherosclerosis with an abundance of annotated datasets, magnetic resonance (MR) images stand out with better visualization for soft plaque and vessel wall characterization. However, the higher cost and limited accessibility of MR, as well as time-consuming nature of manual labeling, contribute to fewer annotated datasets. To address these issues, we formulate a multi-modal transfer learning network, named MT-Net, designed to learn from unpaired CTA and sparsely-annotated MR data. Additionally, we harness the Segment Anything Model (SAM) to synthesize additional MR annotations, enriching the training process. Specifically, our method first segments vessel lumen regions followed by precise characterization of carotid artery vessel walls, thereby ensuring both segmentation accuracy and clinical relevance. Validation of our method involved rigorous experimentation on publicly available datasets from COSMOS and CARE-II challenge, demonstrating its superior performance compared to existing state-of-the-art techniques.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3424884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image analysis poses significant challenges due to limited availability of clinical data, which is crucial for training accurate models. This limitation is further compounded by the specialized and labor-intensive nature of the data annotation process. For example, despite the popularity of computed tomography angiography (CTA) in diagnosing atherosclerosis with an abundance of annotated datasets, magnetic resonance (MR) images stand out with better visualization for soft plaque and vessel wall characterization. However, the higher cost and limited accessibility of MR, as well as time-consuming nature of manual labeling, contribute to fewer annotated datasets. To address these issues, we formulate a multi-modal transfer learning network, named MT-Net, designed to learn from unpaired CTA and sparsely-annotated MR data. Additionally, we harness the Segment Anything Model (SAM) to synthesize additional MR annotations, enriching the training process. Specifically, our method first segments vessel lumen regions followed by precise characterization of carotid artery vessel walls, thereby ensuring both segmentation accuracy and clinical relevance. Validation of our method involved rigorous experimentation on publicly available datasets from COSMOS and CARE-II challenge, demonstrating its superior performance compared to existing state-of-the-art techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过域对齐器、拓扑学习和用于 MR 图像稀疏注释的分段 Anything 模型进行颈动脉血管壁分段
由于临床数据的可用性有限,医学图像分析面临着巨大的挑战,而临床数据对于训练精确的模型至关重要。数据标注过程的专业性和劳动密集型进一步加剧了这一局限性。例如,尽管计算机断层扫描血管造影术(CTA)在诊断动脉粥样硬化方面很受欢迎,有大量的注释数据集,但磁共振(MR)图像在软斑块和血管壁特征描述方面具有更好的可视化效果。然而,磁共振成像的成本较高,可访问性有限,而且人工标注耗时,因此注释数据集较少。为了解决这些问题,我们建立了一个多模态迁移学习网络(名为 MT-Net),旨在从未配对的 CTA 和稀疏标注的 MR 数据中学习。此外,我们还利用 "任意分段模型"(SAM)来合成额外的磁共振注释,从而丰富了训练过程。具体来说,我们的方法首先分割血管腔区域,然后精确描述颈动脉血管壁的特征,从而确保分割的准确性和临床相关性。我们的方法在 COSMOS 和 CARE-II 挑战赛的公开数据集上进行了严格的实验验证,证明其性能优于现有的先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism. Table of Contents LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1