UWB Positioning Integrity Estimation Using Ranging Residuals and ML Augmented Filtering

Mihkel Tommingas;Muhammad Mahtab Alam;Ivo Müürsepp;Sander Ulp
{"title":"UWB Positioning Integrity Estimation Using Ranging Residuals and ML Augmented Filtering","authors":"Mihkel Tommingas;Muhammad Mahtab Alam;Ivo Müürsepp;Sander Ulp","doi":"10.1109/JISPIN.2024.3418296","DOIUrl":null,"url":null,"abstract":"This article investigates the use of ultrawideband (UWB) ranging residuals for coordinate integrity estimation and their use in a filtering scheme. Typically, UWB system accuracy is improved using channel statistics (CSs) to detect and mitigate non-line-of-sight effects between UWB sensors and the object to be located, potentially improving the end coordinate solution. However, in practice, when considering UWB system with a high positioning update rate, this is not a feasible approach, as gathering and processing CS data takes too much time. In contrast to this approach, this article proposes a set of features based on UWB ranging residuals that could be used as an alternative in integrity assessment. By using machine learning (ML), the most important features were extracted from the initial set, and then, used to train and validate a model for UWB coordinate error prediction. Finally, the prediction was applied in an adaptive Kalman filtering scheme as an input for measurement uncertainty. Model testing was done using UWB measurement test dataset gathered at an industrial site. The overall results showed significant improvement in 2-D and 3-D positioning metrics of ML-augmented filtering when compared to non-ML filtering. On average, the end coordinates in the test set had ca. 10 cm smaller mean location error and ca. 40 cm smaller dispersion in 2-D positioning. In addition, the presence of outliers was reduced significantly as the maximum error offset decreased by several meters. Although ML augmented filtering is computationally slower than non-ML filtering (e.g., ordinary and extended Kalman filter), it is still faster than using CS for UWB integrity estimation. The results show that using the proposed residual features in an ML model provides a feasible approach to predict UWB positioning integrity and use it as a measure of uncertainty in a coordinate filtering scheme.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"205-218"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568925","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10568925/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the use of ultrawideband (UWB) ranging residuals for coordinate integrity estimation and their use in a filtering scheme. Typically, UWB system accuracy is improved using channel statistics (CSs) to detect and mitigate non-line-of-sight effects between UWB sensors and the object to be located, potentially improving the end coordinate solution. However, in practice, when considering UWB system with a high positioning update rate, this is not a feasible approach, as gathering and processing CS data takes too much time. In contrast to this approach, this article proposes a set of features based on UWB ranging residuals that could be used as an alternative in integrity assessment. By using machine learning (ML), the most important features were extracted from the initial set, and then, used to train and validate a model for UWB coordinate error prediction. Finally, the prediction was applied in an adaptive Kalman filtering scheme as an input for measurement uncertainty. Model testing was done using UWB measurement test dataset gathered at an industrial site. The overall results showed significant improvement in 2-D and 3-D positioning metrics of ML-augmented filtering when compared to non-ML filtering. On average, the end coordinates in the test set had ca. 10 cm smaller mean location error and ca. 40 cm smaller dispersion in 2-D positioning. In addition, the presence of outliers was reduced significantly as the maximum error offset decreased by several meters. Although ML augmented filtering is computationally slower than non-ML filtering (e.g., ordinary and extended Kalman filter), it is still faster than using CS for UWB integrity estimation. The results show that using the proposed residual features in an ML model provides a feasible approach to predict UWB positioning integrity and use it as a measure of uncertainty in a coordinate filtering scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用测距残差和 ML 增强滤波进行 UWB 定位完整性估计
本文研究了超宽带(UWB)测距残差在坐标完整性估计中的应用,以及在滤波方案中的应用。通常情况下,UWB 系统精度的提高是通过使用信道统计(CS)来检测和减轻 UWB 传感器与待定位物体之间的非视距效应,从而改善最终坐标解决方案。但实际上,当考虑到 UWB 系统具有较高的定位更新率时,这种方法并不可行,因为收集和处理 CS 数据需要花费太多时间。与这种方法不同,本文提出了一套基于 UWB 测距残差的特征,可作为完整性评估的替代方法。通过使用机器学习(ML),从初始集合中提取了最重要的特征,然后用于训练和验证 UWB 坐标误差预测模型。最后,预测结果被应用于自适应卡尔曼滤波方案,作为测量不确定性的输入。模型测试使用了在工业现场收集的 UWB 测量测试数据集。总体结果表明,与非卡尔曼滤波相比,ML 增强滤波在二维和三维定位指标上都有明显改善。平均而言,测试集中的末端坐标在二维定位中的平均位置误差缩小了约 10 厘米,离散度缩小了约 40 厘米。此外,由于最大误差偏移量减少了几米,异常值的出现也大大减少。虽然 ML 增强滤波的计算速度比非 ML 滤波(如普通和扩展卡尔曼滤波)慢,但仍比使用 CS 进行 UWB 完整性估计要快。结果表明,在 ML 模型中使用所提出的残差特征为预测 UWB 定位完整性提供了一种可行的方法,并可将其用作坐标滤波方案中的不确定性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal of Indoor and Seamless Positioning and Navigation Vol. 2 Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1