Degradation of a lithium cobalt oxide cathode under high voltage operation at an interface with an oxide solid electrolyte†

Kotaro Ito, Kazuhisa Tamura, Keisuke Shimizu, Norifumi L. Yamada, Kenta Watanabe, Kota Suzuki, Ryoji Kanno and Masaaki Hirayama
{"title":"Degradation of a lithium cobalt oxide cathode under high voltage operation at an interface with an oxide solid electrolyte†","authors":"Kotaro Ito, Kazuhisa Tamura, Keisuke Shimizu, Norifumi L. Yamada, Kenta Watanabe, Kota Suzuki, Ryoji Kanno and Masaaki Hirayama","doi":"10.1039/D3LF00251A","DOIUrl":null,"url":null,"abstract":"<p >Lithium (de)intercalation of layered rocksalt-type cathodes in high-voltage regions is of great importance for achieving a high energy density in lithium batteries. The reversible capacity of LiCoO<small><sub>2</sub></small> at high voltages is not well known because of oxidative side reactions with the electrolyte species. In this study, a model thin-film battery was fabricated using an epitaxially grown LiCoO<small><sub>2</sub></small> cathode and an amorphous Li<small><sub>3</sub></small>PO<small><sub>4</sub></small> solid electrolyte to suppress oxidative degradation. The film battery operated stably at high voltages, ranging up to 4.6 V, without severe side reactions of LiCoO<small><sub>2</sub></small> and Li<small><sub>3</sub></small>PO<small><sub>4</sub></small>, resulting in a reversible capacity greater than 200 mA h g<small><sup>−1</sup></small>. However, the charge–discharge capacities of the battery decreased with cycling at 4.7 V. <em>In situ</em> synchrotron X-ray diffraction studies revealed an irreversible structural change in LiCoO<small><sub>2</sub></small> at 3.0 V after charging at 4.7 V. Structural degradation occurred both in the bulk and surface regions of the LiCoO<small><sub>2</sub></small> film, indicating intrinsic irreversibility of the crystal structure changes of highly delithiated LiCoO<small><sub>2</sub></small>, although the LiCoO<small><sub>2</sub></small>/electrolyte interface remained stable.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 4","pages":" 790-799"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d3lf00251a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d3lf00251a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (de)intercalation of layered rocksalt-type cathodes in high-voltage regions is of great importance for achieving a high energy density in lithium batteries. The reversible capacity of LiCoO2 at high voltages is not well known because of oxidative side reactions with the electrolyte species. In this study, a model thin-film battery was fabricated using an epitaxially grown LiCoO2 cathode and an amorphous Li3PO4 solid electrolyte to suppress oxidative degradation. The film battery operated stably at high voltages, ranging up to 4.6 V, without severe side reactions of LiCoO2 and Li3PO4, resulting in a reversible capacity greater than 200 mA h g−1. However, the charge–discharge capacities of the battery decreased with cycling at 4.7 V. In situ synchrotron X-ray diffraction studies revealed an irreversible structural change in LiCoO2 at 3.0 V after charging at 4.7 V. Structural degradation occurred both in the bulk and surface regions of the LiCoO2 film, indicating intrinsic irreversibility of the crystal structure changes of highly delithiated LiCoO2, although the LiCoO2/electrolyte interface remained stable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂钴氧化物正极在与氧化物固体电解质的界面上高压运行时的降解†。
层状盐岩型阴极在高电压区的锂(脱)插层对实现锂电池的高能量密度具有重要意义。由于钴酸锂与电解质发生氧化副反应,因此钴酸锂在高电压下的可逆容量并不十分清楚。本研究利用外延生长的钴酸锂正极和非晶态 Li3PO4 固体电解质制作了一种模型薄膜电池,以抑制氧化降解。薄膜电池可在高达 4.6 V 的高电压下稳定工作,钴酸锂和磷酸三锂不会发生严重的副反应,可逆容量大于 200 mA h g-1。原位同步辐射 X 射线衍射研究显示,钴酸锂在 4.7 V 充电后,在 3.0 V 电压下发生了不可逆的结构变化。钴酸锂薄膜的块体和表面区域都发生了结构退化,这表明尽管钴酸锂/电解质界面保持稳定,但高脱钙钴酸锂晶体结构变化的内在不可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid-supported polymer-lipid hybrid membrane for bioelectrochemistry of a membrane redox enzyme. Back cover The first year of RSC Applied Interfaces: a retrospective A phosphite derivative with stronger HF elimination ability as an additive for Li-rich based lithium-ion batteries at elevated temperatures† Multilevel azopolymer patterning from digital holographic lithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1